References
- Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423:337-42. https://doi.org/10.1038/nature01658
- Blair HC, Zaidi M, Schlesinger PH. Mechanisms balancing skeletal matrix synthesis and degradation. Biochem J 2002;364:329-41. https://doi.org/10.1042/BJ20020165
- Teitelbaum SL. Osteoclasts, integrins, and osteoporosis. J Bone Mineral Metab 2000;18:344-9. https://doi.org/10.1007/s007740070007
- Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002;2:389-406. https://doi.org/10.1016/S1534-5807(02)00157-0
- Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 2004;229:293-309. https://doi.org/10.1016/j.jtbi.2004.03.023
- Teitelbaum SL. Bone resorption by osteoclasts. Science 2000;289:1504-8. https://doi.org/10.1126/science.289.5484.1504
- Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 2000;289:1501-4. https://doi.org/10.1126/science.289.5484.1501
- Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003;423:349-355. https://doi.org/10.1038/nature01660
- Olsen BR, Reginato AM, Wang W. Bone development. Ann Rev Cell Dev Biol 2000;16:191-220. https://doi.org/10.1146/annurev.cellbio.16.1.191
- Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 2002;8:147-59. https://doi.org/10.1034/j.1601-0825.2002.01829.x
- Wagner EF, Karsenty G. Genetic control of skeletal development. Curr Opin Genet Dev 2001;11:527-32. https://doi.org/10.1016/S0959-437X(00)00228-8
- Deng ZL, Sharff KA, Tang N, Song WX, Luo J, Luo X, et al. Regulation of osteogenic differentiation during skeletal development. Front Biosci 2008;13:2001-21. https://doi.org/10.2741/2819
- Raouf A, Seth A. Ets transcription factors and targets in osteogenesis. Oncogene 2000;19:6455-63. https://doi.org/10.1038/sj.onc.1204037
- Miyazaki Y, Sun X, Uchida H, Zhang J, Nimer S. MEF, a novel transcription factor with an Elf-1 like DNA binding domain but distinct transcriptional activating properties. Oncogene 1996;13:1721-9.
- Suico MA, Koyanagi T, Ise S, Lu Z, Hisatsune A, Seki Y, et al. Functional dissection of the ETS transcription factor MEF. Biochim Biophys Acta 2002;1577:113-20. https://doi.org/10.1016/S0167-4781(02)00370-6
- Hedvat CV, Yao J, Sokolic RA, Nimer SD. Myeloid ELF1-like factor is a potent activator of interleukin-8 expression in hematopoietic cells. J Biol Chem 2004;279:6395-400. https://doi.org/10.1074/jbc.M307524200
- Lu Z, Kim KA, Suico MA, Shuto T, Li JD, Kai H. MEF upregulates human beta-defensin 2 expression in epithelial cells. FEBS Lett 2004;561:117-21. https://doi.org/10.1016/S0014-5793(04)00138-3
- Lee MH, Kim YJ, Kim HJ, Park HD, Kang AR, Kyung HM, et al. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 2003;278:34387-94. https://doi.org/10.1074/jbc.M211386200
- Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, et al. Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 1999;274:6972-8. https://doi.org/10.1074/jbc.274.11.6972
- Towler DA, Bennett CD, Rodan GA. Activity of the rat osteocalcin basal promoter in osteoblastic cells is dependent upon homeodomain and CP1 binding motifs. Mol Endocrinol 1994;8:614-24. https://doi.org/10.1210/me.8.5.614
- Towler DA, Rutledge SJ, Rodan GA. Msx-2/Hox 8.1: a transcriptional regulator of the rat osteocalcin promoter. Mol Endocrinol 1994;8:1484-93. https://doi.org/10.1210/me.8.11.1484
- Lacorazza HD, Nimer SD. The emerging role of the myeloid Elf-1 like transcription factor in hematopoiesis. Blood Cells Mol Dis 2003;31:342-50. https://doi.org/10.1016/S1079-9796(03)00162-1
- Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89:755-64. https://doi.org/10.1016/S0092-8674(00)80258-5
- Sato M, Morii E, Komori T, Kawahata H, Sugimoto M, Terai K, et al. Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene 1998;17:1517-25. https://doi.org/10.1038/sj.onc.1202064
- Wai PY, Mi Z, Gao C, Guo H, Marroquin C, Kuo PC. Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. J Biol Chem 2006;281:18973-82. https://doi.org/10.1074/jbc.M511962200
Cited by
- Osteomimicry of Mammary Adenocarcinoma Cells In Vitro ; Increased Expression of Bone Matrix Proteins and Proliferation within a 3D Collagen Environment vol.7, pp.7, 2012, https://doi.org/10.1371/journal.pone.0041679
- Roles and regulations of the ETS transcription factor ELF4/MEF vol.9, pp.3, 2017, https://doi.org/10.1093/jmcb/mjw051
- Cyclophosphamide causes osteoporosis in C57BL/6 male mice: suppressive effects of cyclophosphamide on osteoblastogenesis and osteoclastogenesis vol.8, pp.58, 2010, https://doi.org/10.18632/oncotarget.21000
- The microRNA-10a/ID3/RUNX2 axis modulates the development of Ossification of Posterior Longitudinal Ligament vol.8, pp.None, 2010, https://doi.org/10.1038/s41598-018-27514-x
- Synergistic activation of the NEU4 promoter by p73 and AP2 in colon cancer cells vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-018-37521-7
- BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway vol.10, pp.25, 2010, https://doi.org/10.7150/thno.47432
- The Positive Effect of TET2 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells vol.22, pp.1, 2010, https://doi.org/10.1089/cell.2019.0045