References
- Melcher AH. On the repair potential of periodontal tissues. J Periodontol 1976;47:256-60. https://doi.org/10.1902/jop.1976.47.5.256
- Minabe M. A critical review of the biologic rationale for guided tissue regeneration. J Periodontol 1991;62:171-9. https://doi.org/10.1902/jop.1991.62.3.171
- Nyman S, Karring T, Lindhe J, Planten S. Healing following implantation of periodontitis-affected roots into gingival connective tissue. J Clin Periodontol 1980;7:394-401. https://doi.org/10.1111/j.1600-051X.1980.tb02012.x
- Urist MR. Bone: formation by autoinduction, 1965. Clin Orthop Relat Res 2002;395:4-10. https://doi.org/10.1097/00003086-200202000-00002
- Dettin M, Conconi MT, Gambaretto R, Bagno A, Di Bello C, Menti AM, et al. Effect of synthetic peptides on osteoblast adhesion. Biomaterials 2005;26:4507-15. https://doi.org/10.1016/j.biomaterials.2004.11.023
- Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: molecular clones and activities. Science 1988;242:1528-34. https://doi.org/10.1126/science.3201241
- Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, et al. Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci U S A 1990;87:9843-7. https://doi.org/10.1073/pnas.87.24.9843
- Sampath TK, Maliakal JC, Hauschka PV, Jones WK, Sasak H, Tucker RF, et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 1992;267:20352-62.
- Hong SJ, Kim CS, Han DK, Cho IH, Jung UW, Choi SH, et al. The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Biomaterials 2006;27:3810-6. https://doi.org/10.1016/j.biomaterials.2006.02.045
- Saito A, Suzuki Y, Ogata S, Ohtsuki C, Tanihara M. Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. J Biomed Mater Res A 2005;72:77-82.
- Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988;55:1189-93. https://doi.org/10.1016/0092-8674(88)90263-2
- Schwarze SR, Hruska KA, Dowdy SF. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 2000;10:290-5. https://doi.org/10.1016/S0962-8924(00)01771-2
- Benoit DS, Anseth KS. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 2005;26:5209-20. https://doi.org/10.1016/j.biomaterials.2005.01.045
- Frame JW. A convenient animal model for testing bone substitute materials. J Oral Surg 1980;38:176-80.
- Caton J, Mota L, Gandini L, Laskaris B. Non-human primate models for testing the efficacy and safety of periodontal regeneration procedures. J Periodontol 1994;65:1143-50. https://doi.org/10.1902/jop.1994.65.12.1143
- Freeman E, Turnbull RS. The value of osseous coagulum as a graft material. J Periodontal Res 1973;8:229-36. https://doi.org/10.1111/j.1600-0765.1973.tb00762.x
- Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986;205:299-308.
- Selvig KA. Discussion: animal models in reconstructive therapy. J Periodontol 1994;65:1169-72. https://doi.org/10.1902/jop.1994.65.12.1169
- Saito A, Suzuki Y, Ogata S, Ohtsuki C, Tanihara M. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta 2003;1651:60-7. https://doi.org/10.1016/S1570-9639(03)00235-8
- Masuko T, Iwasaki N, Yamane S, Funakoshi T, Majima T, Minami A, et al. Chitosan-RGDSGGC conjugate as a scaffold material for musculoskeletal tissue engineering. Biomaterials 2005;26:5339-47. https://doi.org/10.1016/j.biomaterials.2005.01.062
- Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 1998;16:247-52. https://doi.org/10.1038/nbt0398-247
- Groeneveld EH, Burger EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 2000;142:9-21. https://doi.org/10.1530/eje.0.1420009
- Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 1990;87:2220-4. https://doi.org/10.1073/pnas.87.6.2220
- Hollinger JO, Schmitt JM, Buck DC, Shannon R, Joh SP, Zegzula HD, et al. Recombinant human bone morphogenetic protein-2 and collagen for bone regeneration. J Biomed Mater Res 1998;43:356-64. https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<356::AID-JBM3>3.0.CO;2-7
- Uludag H, Friess W, Williams D, Porter T, Timony G, D'Augusta D, et al. rhBMP-collagen sponges as osteoinductive devices: effects of in vitro sponge characteristics and protein pI on in vivo rhBMP pharmacokinetics. Ann N Y Acad Sci 1999;875:369-78. https://doi.org/10.1111/j.1749-6632.1999.tb08519.x
Cited by
- Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth vol.29, pp.9, 2010, https://doi.org/10.1002/jor.21409
- Effects of Laser and Ozone Therapies on Bone Healing in the Calvarial Defects vol.24, pp.6, 2010, https://doi.org/10.1097/scs.0b013e3182a244ae
- The effect of local simvastatin application on critical size defects in the diabetic rats vol.25, pp.8, 2010, https://doi.org/10.1111/clr.12177
- Effect of rhBMP‐2 dose on bone formation/maturation in a rat critical‐size calvarial defect model vol.41, pp.8, 2010, https://doi.org/10.1111/jcpe.12270
- Effects of caffeic acid phenethyl ester on wound healing in calvarial defects vol.73, pp.1, 2015, https://doi.org/10.3109/00016357.2014.942876
- Effect of Local Rosuvastatin Administration on Calvarial Bone Defects vol.27, pp.8, 2010, https://doi.org/10.1097/scs.0000000000002763
- The Effect of Local Rosuvastatin on Mandibular Fracture Healing vol.27, pp.8, 2010, https://doi.org/10.1097/scs.0000000000003120
- The Local Effect of Puerarin on Critical-Sized Calvarial Defects vol.28, pp.1, 2010, https://doi.org/10.1097/scs.0000000000003271
- Effects of Ankaferd BloodStopper on bone healing in an ovariectomized osteoporotic rat model vol.13, pp.5, 2010, https://doi.org/10.3892/etm.2017.4166
- The Effect of Strontium Ranelate Gel on Bone Formation in Calvarial Critical Size Defects vol.5, pp.7, 2017, https://doi.org/10.3889/oamjms.2017.164