A Variable-Length FFT/IFFT Processor for Multi-standard OFDM Systems

다중표준 OFDM 시스템용 가변길이 FFT/IFFT 프로세서

  • 임창완 (다믈멀티미디어 SoC개발팀) ;
  • 신경욱 (금오공과대학교 전자공학부)
  • Published : 2010.02.28

Abstract

This paper describes a design of variable-length FFT/IFFT processor (VL_FCore) for OFDM-based multi-standard communication systems. The VL_FCore adopts in-place single-memory architecture, and uses a hybrid structure of radix-4 and radix-2 DIF algorithms to accommodate various FFT lengths in the range of $N=64{\times}2^k\;(0{\leq}k{\leq}7)$. To achieve both memory size reduction and the improved SQNR, a two-step conditional scaling technique is devised, which conditionally scales the intermediate results of each computational stage. The performance analysis results show that the average SQNR's of 64~8,192-point FFT's are over 60-dB. The VL_FCore synthesized with a $0.35-{\mu}m$ CMOS cell library has 23,000 gates and 32 Kbytes memory, and it can operate with 75-MHz@3.3-V clock. The 64-point and 8,192-point FFT's can be computed in $2.25-{\mu}s$ and $762.7-{\mu}s$, respectively, thus it satisfies the specifications of various OFDM-based systems.

다중 표준을 지원하는 OFDM 기반 통신 시스템용 가변길이 FFT/IFFT 프로세서 (VL_FCore)를 설계하였다. VL_FCore는 $N=64{\times}2^k\;(0{\leq}k{\leq}7)$의 8가지 길이의 FFT/IFFT를 선택적으로 연산할 수 있으며, in-place 방식의 단일 메모리 구조를 기반으로 FFT 길이에 따라 radix-4와 radix-2 DIF 알고리듬의 혼합구조가 적용된다. 중간 결과 값의 크기에 따른 2단계 조건적 스케일링 기법을 적용하여 메모리 크기 감소와 연산 정밀도 향상을 이루었다. 설계된 VL_FCore의 성능을 평가한 결과, 64점~8,192점 FFT 연산에 대해 평균 60 dB 이상의 SQNR 성능을 가지며, $0.35-{\mu}m$ CMOS 셀 라이브러리로 합성하여 23,000 게이트와 32 Kbytes의 메모리로 구현되었다. VL_FCore는 75-MHz@3.3-V의 클록으로 동작하며, 64점 FFT 연산에 $2.25-{\mu}s$, 8,192점 FFT 연산에 $762.7-{\mu}s$가 소요되어 다양한 OFDM 통신 시스템의 요구조건을 만족한다.

Keywords

References

  1. J.A.C. Bingham, "Multicarrier modulation for data transmission: an idea whose time has come," IEEE Commun. Mag., Vol.28, pp.17-25, Mar., 1990.
  2. H. Sari, G. Karam, and I. Jeanclaude, "Transmission techniques for digital terrestrial TV broadcasting," IEEE Commun. Mag., Vol.33, pp.100-109, Feb., 1995.
  3. 조용수, 무선 멀티미디어 통신을 위한 OFDM 기초, 대영사, 2001.
  4. 김재석, 조용수, 조중휘, 이동통신용 모뎀의 VLSI 절계 CDMA, OFDM, MC-CDMA, 대영사, 2000.
  5. J.C. Kuo, C.H. Wen, A.Y. Wu, "Implementation of a programmable 64 -2048-point FFT/ IFFT processor for OFDM-based communication systems," Proceedings of the IEEE Int. Symp. on Circuits and Systems, Vol.2, pp.121-124, May 2003.
  6. 이진우, 신경욱, 김종환, 백영석, 어익수, "OFDM 모뎀용 FFT/IFFT IP 자동 생성기," 한국통신학회논문지 제31권 제3A호, pp. 368-376, 2006.
  7. B.M. Baas, "A low-power, high-performance, 1024-point FFT processor," IEEE Journal of Solid-State Circuits, Vol.24, No.3, pp.380-387, Mar. 1999.
  8. H. Shousheng and , M. Torkelson, "Design and implementation of a 1024-point pipeline FFf processor", Proc. of IEEE Custom Integrated Circuits Conference, pp.131-134, 1998.
  9. E. Bidet, D. Castelain, C. Joanblanq, P. Senn, "A fast single-chip implementation of 8192 complex point FFT", IEEE Journal of Solid-State Circuits., Vol. 30 Issue-3, pp.300-305, Mar., 1995. https://doi.org/10.1109/4.364445
  10. Kyung-Wook Shin, Bang-Sup Song, Kantilal Bacrania, "A 200-MHz complex number multiplier using redundant binary arithmetic", IEEE Journal of Solid-State Circuits, Vol.33, No.6, pp.904-909, Jun., 1998. https://doi.org/10.1109/4.678655
  11. Y.J. Hongil and J. Kim, "New efficient FFT algorithm and pipeline implementation result for OFDM/DMT applications", IEEE Trans. on Consumer Electronics, Vol.49, No.1, pp.14-20, Feb. 2003. https://doi.org/10.1109/TCE.2003.1205450
  12. Amphion, CS2410 8-1024 Point FFT/IFFT, Jul. 2001.
  13. B.G. Jo and M.H. Sunwoo, "New continuousflow mixed-radix (CFMR) FFT processor using novel in-place strategy," IEEE Trans. on Circuits and Systems I: Regular Papers, Vol.52, No.5, pp.911-919, May 2005. https://doi.org/10.1109/TCSI.2005.846667
  14. 임창완, 신경욱, "단일메모리 구조의 가변길이 FFT/IFFT 프로세서 설계", 한국해양정보통신학회 추계학술대회 논문집, pp.393-396, 2009. 10