성상도 집합 그룹핑 기반의 적응형 병렬 및 반복적 QRDM 검출 알고리즘

Adaptive Parallel and Iterative QRDM Detection Algorithms based on the Constellation Set Grouping

  • 마나르모하이센 (인하대학교 정보통신대학원 이동통신연구실) ;
  • 안홍선 (인하대학교 정보통신대학원 이동통신연구실) ;
  • 장경희 (인하대학교 정보통신대학원 이동통신연구실) ;
  • 구본태 (한국전자통신연구원 통방융합SoC연구팀) ;
  • 백영석 (한국전자통신연구원 통방융합SoC연구팀)
  • 발행 : 2010.02.28

초록

본 논문에서는 집합 그룹핑을 이용한 APQRDM (adaptive parallel QRDM) 알고리즘과 AIQRDM (adaptive iterative QRDM) 알고리즘을 제안한다. 제안된 검출 알고리즘은 집합 그룹핑을 이용하여 QRDM 알고리즘의 트리 검색 단계를 PDP (partial detection phases) 로 분할하여 수행한다. 기존 QRDM 알고리즘의 트리 검색 단계가 4개의 PDP로 나누어질 때, APQRDM 알고리즘은 기존 QRDM 알고리즘의 1/4 에 해당하는 검출 지연(latency) 을 가지며, AIQRDM 알고리즘은 기존 QRDM 알고리즘의 약 1/4에 해당하는 하드웨어 요구량을 가진다. 모의실험 결과는 $4{\times}4$ 시스템의 경우, APQRDM 알고리즘은 12dB의 Eb/N0에서 기존 QRDM 알고리즘의 약 43%에 해당하는 연산 복잡도를 가지며, AIQRDM 알고리즘은 0dB의 Eb/N0에서 기존 QRDM 알고리즘의 54%, AQRDM 알고리즘의 10%에 해당하는 연산 복잡도를 가짐을 보인다.

In this paper, we propose semi-ML adaptive parallel QRDM (APQRDM) and iterative QRDM (AIQRDM) algorithms based on set grouping. Using the set grouping, the tree-search stage of QRDM algorithm is divided into partial detection phases (PDP). Therefore, when the treesearch stage of QRDM is divided into 4 PDPs, the APQRDM latency is one fourth of that of the QRDM, and the hardware requirements of AIQRDM is approximately one fourth of that of QRDM. Moreover, simulation results show that in $4{\times}4$ system and at Eb/N0 of 12 dB, APQRDM decreases the average computational complexity to approximately 43% of that of the conventional QRDM. Also, at Eb/N0 of 0dB, AIQRDM reduces the computational complexity to about 54% and the average number of metric comparisons to approximately 10% of those required by the conventional QRDM and AQRDM.

키워드

참고문헌

  1. E. Telatar, "Capacity of multi-antenna Gaussian channels," European Transactions on Telecommunications, Vol.10, pp.585-595, 1999. https://doi.org/10.1002/ett.4460100604
  2. W. Van Etten, "Maximum likelihood receiver for multiple channel transmission systems," IEEE Transactions on Communications, pp. 276-283, Feb. 1976.
  3. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, "Closest point search in lattices," IEEE Transactions on Information Theory, Vol.48, No.8, pp.2201-2214, Nov. 2002. https://doi.org/10.1109/TIT.2002.800499
  4. K. J. Kim, J. Yue, R. A. Iltis, and J.D. Gibson, "AQRD-M/Kalman filterbased detection and channel estimation algoritlnn for MlMO-OFDM systems," IEEE Transactions on Wireless Communications, Vol.4, No.2, pp.710-721, Mar. 2005.
  5. J. Jalden and B. Ottersten, "On the complexity of sphere decoding in digital communications," IEEE Transactions on Signal Processing, Vol. 53, No.4, pp.1474-1484, Apr. 2005.
  6. J. Jalden, L. Barbero, B. Ottersteny, and J. Thompson, "Full diversity detection in MIMO systems with a fixed-complexity sphere decoder," in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP, Vol.3, pp.49-52, Apr. 2007.
  7. W. H. Chin "QRD based tree search data detection for MIMO communication systems," in Proc. Vehicular Technology Conference VTC, Vol.3, pp.1624-27, June 2005.
  8. H. Kawai, K. Higuchi, N. Maeda, and M. Sawahashi, "Adaptive control of surviving symbol replicas in QRD-MLD for OFDM-MIMO multiplexing," IEEE Journal of Selected Areas in Communications, Vol.24, No.6, pp. 1130-1140, Jun. 2006. https://doi.org/10.1109/JSAC.2005.864027
  9. P. Wolniansky, G. Foschini, G. Golden and R. Valenzuela "V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel," in Proc. URSI International Symposium on Signals, Systems, and Electronics, pp.295-300, Oct. 1998.