Performance Analysis of RS, Turbo and LDPC Code in the Binary Symmetric Erasure Channel

이진 대칭 소실 채널에서 RS, 터보 및 저밀도 패리티 검사 부호의 성능 분석

  • 임형택 (경북대학교 전자전기컴퓨터학부) ;
  • 박명종 (한국전파진흥원) ;
  • 강석근 (경상대학교 전기전자공학부) ;
  • 주언경 (경북대학교 전자전기컴퓨터학부)
  • Published : 2010.02.28

Abstract

In this paper, performance of RS (Reed-Solomon), turbo and LDPC (low density parity check) code in the binary symmetric erasure channel is investigated. When the average erasure length is reduced, the frequency of short erasures is increased. The RS code shows serious performance degradation in such an environment since decoding is carried out symbol-by-symbol. As the erasure length is increased, however, the RS code shows much improved en-or performance. On the other hand, the message and corresponding parity symbols of the turbo code can be erased at the same time for the long erasures. Accordingly, iterative decoding of the turbo code can not improve error performance any more for such a long erasure. The LDPC code shows little difference in error performance with respect to the variation of the average erasure length due to the virtual interleaving effect. As a result, the LDPC code has much better erasure decoding performance than the RS and turbo code.

본 논문에서는 이진 대칭 소실 채널에서 RS 부호 터보부호 및 저밀도 패리티 검사부호의 성능을 비교 분석한다. RS 부호는 심벌 단위로 복호가 이루어지므로 평균 소실 길이가 짧아지면 소실 심벌 수가 증가하여 매우 심각한 성능열화를 보인다. 하지만 소실 길이가 길어지면 소실 심벌 수가 감소하여 오류 성능이 크게 개선된다. 이와는 달리 터보부호는 소실 길이가 증가하면 메시지와 연관된 정보를 가진 다수의 심벌들이 함께 소실되므로 반복 복호를 수행하더라도 성능이 개선되지 않는다. 저밀도 패리티 검사부호는 평균 소실 길이가 변하더라도 현격한 오류 성능의 차이가 없는 것으로 나타났다. 이는 저밀도 패리티 검사부호의 복호과정에서 발생하는 가상 인터리빙 효과에 의한 것으로 분석된다. 이로 인하여 이 부호는 RS 부호나 터보부호에 비하여 훨씬 우수한 소실 복호 성능을 보인다.

Keywords

References

  1. E. Rosnes and O. Ytrehus, "Finite-length analysis of turbo decoding on the binary erasure channel," Proc. IEEE ISIT'05, Adelaide, Australia, pp.1246-1250, Sep. 2005.
  2. G. C. Glain, C. Marco, C. Franco, and G. Roberto, "Channel coding for future space missions: New requirements and trends," Proc. IEEE, Vol.95, No.11, pp.2157-2170, Nov. 2007. https://doi.org/10.1109/JPROC.2007.905134
  3. Y. W. Chang, J. H. Jeng, and T. K. Truong, "An efficient Euclidean algorithm for Reed-Solomon code to correct both errors and erasures," Proc. IEEE PACRIM'03, Victoria, Canada, pp.895-898, Aug. 2003.
  4. C. Berrou, A. Glavieux, and P. Thitimajshima, "Near optimum error correcting coding and decoding: Turbo codes," Proc. IEEE ICC'93, Geneva, Switzerland, pp.1064-1070, May 1993.
  5. R. G. Gallager, "Low-density parity-check codes," IRE Trans. Inform. Theory, Vol.8, No. 1, pp.21-28, Jan. 1962. https://doi.org/10.1109/TIT.1962.1057683
  6. C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, "Finite-length analysis of low-density parity-check codes on the binary erasure channel," IEEE Trans. Inform. Theory, Vol.48, No.6 pp.1570-1579, June 2002. https://doi.org/10.1109/TIT.2002.1003839
  7. F. Babich and F. Vatta, "Robust, efficient and balanced (REB) rate-compatible puncturing schemes for hybrid ARQ algorithms using turbo codes," Proc. IEEE ICC'06, Istanbul, Turkey, pp.1154-1159, June 2006.
  8. N. Miladinovic and M. P. C. Fossorier, "Generalized LDPC codes and generalized stopping sets," IEEE Trans. Commun., Vol.56, No.2, pp.201-212, Feb. 2008. https://doi.org/10.1109/TCOMM.2008.041077
  9. B. Xei, Y. L. Guan, J. Chen, C. Lu, and Z. Li, "Application of erasure decoding in fiber optical systems with FEC," Proc. IEEE LEOS Summer Topical Meetings, San Diego, CA, pp. 171-172, July 2005.
  10. E. P. Guillen, J. J. Lopez, and C. Y. Barahona, "Throughput analysis over power line communication channel in an electric noisy scenario," Proc. WASET'08, Heidelberg, Germany, pp.206-212, Sep. 2008.
  11. H. L. Liu and B. H. Zhang, "The couple technology of distribution high-speed carrier communication," Proc. IEEE ICPST'02, Kunming, China, pp.1312-1315, Oct. 2002.
  12. G. C. Clark, Jr. and J. B. Cain, Error-correcting Coding for Digital Communications, New York: Plenum, 1982.
  13. J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block and convolutional codes," IEEE Trans. Inform. Theory, Vol.42, No.2, pp.429-445, Mar. 1996. https://doi.org/10.1109/18.485714
  14. A. Shibutani, H. Suda, and Y. Yamao, "The performances of W-CDMA mobile radio with turbo codes using prime interleaver," Proc. VTC 2000, Tokyo, Japan, pp.946-950, May 2000.
  15. T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, "Design of capacity-approaching irregular low-density parity-check codes," IEEE Trans. Inform. Theory, Vol.47, No.2, pp. 619-637, Feb. 2001. https://doi.org/10.1109/18.910578
  16. D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low-density parity-check codes," Electron. Lett., Vol.33, No.6, pp.457-458; Mar. 1997. https://doi.org/10.1049/el:19970362
  17. S. Benedetto and G. Montorsi, "Unveiling turbo codes: Some results on parallel concatenated coding schemes," IEEE Trans. Inform. Theory, Vol.42, No.2, pp.409-428, Mar. 1996. https://doi.org/10.1109/18.485713
  18. Z. Juntan, W. Yige, M. P. C. Fossorier, and J. S. Yedidia, "Iterative decoding with replicas," IEEE Trans. Inform. Theory, Vol.53, No.5, pp.1644-1663, May 2007. https://doi.org/10.1109/TIT.2007.894683
  19. J. Hou, P. H. Siegel, and L. B. Milstein, "Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels," IEEE J. Select. Areas Commun., Vol.19, No.5, pp.924-934, May 2001. https://doi.org/10.1109/49.924876