DOI QR코드

DOI QR Code

A Newly Isolated Rhizopus microsporus var. chinensis Capable of Secreting Amyloytic Enzymes with Raw-Starch-Digesting Activity

  • Li, Yu-Na (The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University) ;
  • Shi, Gui-Yang (The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University) ;
  • Wang, Wu (The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University) ;
  • Wang, Zheng-Xiang (The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University)
  • Published : 2010.02.28

Abstract

A newly isolated active producer of raw-starch-digesting amyloytic enzymes, Rhizopus microsporus var. chinensis CICIM-CU F0088, was screened and identified by morphological characteristics and molecular phylogenetic analyses. This fungus was isolated from the soil of Chinese glue pudding mill, and produced high levels of amylolytic activity under solid-state fermentation with supplementation of starch and wheat bran. Results of thin-layer chromatography showed there are two kinds of amyloytic enzymes formed by this strain, including one $\alpha$-amylase and two glucoamylases. It was found in the electron microscope experiments that the two glucoamylases can digest raw corn starch and have an optimal temperature of $70^{\circ}C$. These results signified that amyloytic enzymes secreted by strain Rhizopus microsporus var. chinensis CICIM-CU F0088 were types of thermostable amyloytic enzymes and able to digest raw corn starch.

Keywords

References

  1. Acevedo, E. and L. Cardemil. 1997. Regulation of $\alpha$-amylase isoenzymes expression in Araucaria araucona by gibberellic and abscisic acids. Phytochemistry 44: 1401-1405. https://doi.org/10.1016/S0031-9422(96)00692-9
  2. Anderson, K., S. C. Li, and Y. T. Li. 2000. Diphenylamineaniline-phosphoric acid reagent, a versatile spray reagent for revealing glycoconjugates on thin-layer chromatography plates. Anal. Biochem. 287: 337-339. https://doi.org/10.1006/abio.2000.4829
  3. Annunziato, M. E., R. R. Mahoney, and R. E. Mudgett. 2006. Production of $\alpha$-galactosidase from Aspergilus oryzae grown in solid state culture. J. Food Sci. 51: 1370-1371.
  4. Chou, W. I., T. W. Pai, S. H. Liu, B. K. Hsiung, and M.D.T. Chang. 2006. The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem. J. 396: 469-477. https://doi.org/10.1042/BJ20051982
  5. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
  6. Fujii, M. and Y. Kawamura. 2004. Synergistic action of $\alpha$-amylase and glucoamylase on hydrolysis of starch. Biotechnol. Bioeng. 27: 260-265.
  7. Gardes, M. and T. D. Bruns.1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  8. Goncalves, A. Z. L., A. F. A. Carvalho, R. Silva, and E. Gomes. 2008. Localization and partial characterization of thermostable glucoamylase produced by newly isolated Thermomyces lanuginosus TO3 in submerged fermentation. Braz. Arch. Biol. Tech. 51: 857-865.
  9. Kumar, S., P. Kumar, and T. Satyanarayana. 2007. Production of raw starch-saccharifying thermostable and neutral glucoamylase by the thermophilic mold Thermomucor indicae-seudaticae in submerged fermentation. Appl. Biochem. Biotech. 142: 221-230. https://doi.org/10.1007/s12010-007-0011-x
  10. Kumar, S. and T. Satyanarayana. 2003. Purification and kinetics of raw starch hydrolysing thermostable and neutral glucoamylase of thermophilic mold Thermomucor indicae-seudaticae. Biotechnol. Progr. 19: 936-944. https://doi.org/10.1021/bp034012a
  11. Li, Y., Z. Q. Liu, and F. J. Cui. 2007. Application of statistical experimental design to optimize culture requirements of Aspergillus sp. Zh-26 producing xylanase for degradation of arabinoxylans in mashing. J. Food Sci. 72: 320-329. https://doi.org/10.1111/j.1750-3841.2007.00389.x
  12. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193: 265-275.
  13. Nahar, S., F. Hossain, B. Feroza, and M. A. Halim. 2008. Production of glucoamylase by Rhizopus sp. in liquid culture. Pak. J. Bot. 40: 1693-1698.
  14. Nguyen, C. H., R. Tsurumizu, T. Sato, and M. Takeuchi. 2005. Taka-amylase A in the conidia of Aspergillus oryzae RIB40. Biosci. Biotechnol. Biochem. 69: 2035-2041. https://doi.org/10.1271/bbb.69.2035
  15. Nielsen, B. R., J. Lehmbeck, and T. P. Frandsen. 2002. Cloning, heterologous expression, and enzymatic characterization of a thermostable glucoamylase from Talaromyces emersonii. Protein Expres. Purif. 26: 1-8. https://doi.org/10.1016/S1046-5928(02)00505-3
  16. Norouzian, D., A. Akbarzadeh, J. M. Scharer, and M. M. Young. 2006. Fungal glucoamylases. Biotechnol. Adv. 24: 80-85. https://doi.org/10.1016/j.biotechadv.2005.06.003
  17. Pandey, A. 1995. Glucoamylase research: An overview. Starch. 47: 439-445. https://doi.org/10.1002/star.19950471108
  18. Peixoto, S. C., J. A. Jorge, H. F. Terenzi, M. de Lourdes, and T. M. Polizeli. 2003. Rhizopus microsporus var. rhizopodiformis: A thermotolerant fungus with potential for production of thermostable amylases. Int. Microbiol. 6: 269-273. https://doi.org/10.1007/s10123-003-0140-1
  19. Peixoto, S. C., V. C. Sandrim, L. H. S. Guimarães, J. A. Jorge, H. F. Terenzi, and M. L. T. M. Polizeli. 2008. Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioproc. Biosyst. Eng. 31: 329-334. https://doi.org/10.1007/s00449-007-0166-4
  20. Rajoka, M. I., A. Yasmin, and F. Latif. 2004. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation. Lett. Appl. Microbiol. 39: 13-18. https://doi.org/10.1111/j.1472-765X.2004.01526.x
  21. Rajoka, M. I. and A. Yasmin. 2005. Induction, and production studies of a novel glucoamylase of Aspergillus niger. World J. Microbiol. Biotechnol. 21: 179-187. https://doi.org/10.1007/s11274-004-1766-7
  22. Ravi-Kumar, K., K. S. Venkatesh, and S. Umesh-Kumar. 2004. Evidence that cleavage of the precursor enzyme by autocatalysis caused secretion of multiple amylases by Aspergillus niger. FEBS Lett. 557: 239-242. https://doi.org/10.1016/S0014-5793(03)01510-2
  23. Ray, R. C. 2004. Extracellular amylase(s) production by fungi Botryodiplodia theobromae and Rhizopus oryzae grown on cassava starch residue. J. Environ. Biol. 25: 489-495.
  24. Robertson, G. H., D. W. S. Wong, C. C. Lee, K. Wagschal, M. R. Smith, and W. J. Orts. 2006. Native or raw starch digestion: A key step in energy efficient biorefining of grain. J. Agr. Food Chem. 54: 353-365. https://doi.org/10.1021/jf051883m
  25. Schipper, M. A. A. and J. A. Stalpers. 1984. Revision of the genus Rhizopus. Stud. Mycol. 25: 20-34.
  26. Shigechi, H., J. Koh, Y. Fujita, T. Matsumoto, Y. Bito, M. Ueda, E. Satoh, H. Fukuda, and A. Kondo. 2004. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl. Environ. Microb. 70: 5037-5040. https://doi.org/10.1128/AEM.70.8.5037-5040.2004
  27. Shoji, H., T. Sugimoto, and K. Hosoi. 2007. Simultaneous production of glucoamylase and acid-stable alpha-amylase using novel submerged culture of Aspergillus kawachii NBRC4308. J. Biosci. Bioeng. 103: 203-205. https://doi.org/10.1263/jbb.103.203
  28. Sun, H. Y., P. J. Zhao, and M. Peng. 2008. Application of maltitol to improve production of raw starch digesting glucoamylase by Aspergillus niger F-08. World J. Microbiol. Biotechnol. 24: 2613-2618. https://doi.org/10.1007/s11274-008-9785-4
  29. Sun, H. Y., X. Y. Ge, and W. G. Zhang. 2007. Production of a novel raw-starch-digesting glucoamylase by Penicillium sp. X-1 under solid state fermentation and its use in direct hydrolysis of raw starch. World J. Microbiol. Biotechnol. 23: 603-613. https://doi.org/10.1007/s11274-006-9269-3
  30. Sutthirak, P., S. Dharmsthiti, and L. Sittiwat. 2005. Effect of glycation on stability and kinetic parameters of thermostable glucoamylase from Aspergillus niger. Process Biochem. 40: 2821-2826. https://doi.org/10.1016/j.procbio.2004.12.008
  31. Takeda, Y., S. Hizukuri, Y. Ozono, and M. Suetake. 1983. Actions of porcine pancreatic and Bacillus subtilis alphaamylases and Aspergillus niger glucoamylase on phosphorylated (1-4)-alpha-D-glucan. Biochim. Biophys. Acta 749: 302-311. https://doi.org/10.1016/0167-4838(83)90240-6
  32. Tatsumi, H. and H. Katano. 2005. Kinetics of the surface hydrolysis of raw starch by glucoamylase. J. Agr. Food Chem. 53: 8123-8127. https://doi.org/10.1021/jf050934c
  33. Walker, J. M. 1996. Non denaturing polyacrylamide gel electrophoresis of proteins pp. 51-55. In: Protein Protocols, Humana Press, Totowa, New Jersey.
  34. Wang, L. S., X. Y. Ge, and W. G. Zhang. 2007. Improvement of ethanol yield from raw corn flour by Rhizopus sp. World J. Microbiol. Biotechnol. 23: 461-465. https://doi.org/10.1007/s11274-006-9247-9
  35. Wang, P. V., V. Singh, H. Xue, D. B. Johnston, K. D. Rausch, and M. E. Tumbleson. 2007. Comparison of raw starch hydrolyzing enzyme with conventional liquefaction and saccharification enzymes in dry-grind corn processing. Cereal Chem. 84: 10-14. https://doi.org/10.1094/CCHEM-84-1-0010
  36. Xiao, Z. Z., R. Storms, and A. A. Tsang. 2006. Quantitative starchiodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 351: 146-148. https://doi.org/10.1016/j.ab.2006.01.036

Cited by

  1. Purification and enzymatic identification of an acid stable and thermostable α-amylase fromRhizopus microsporus : Acid- and thermo-stable α-amylase vol.118, pp.3, 2010, https://doi.org/10.1002/jib.45