DOI QR코드

DOI QR Code

In Vitro Screening for Antimicrobial Activity of Chitosans and Chitooligosaccharides, Aiming at Potential Uses in Functional Textiles

  • Fernandes, Joao C. (CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa) ;
  • Tavaria, Freni K. (CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa) ;
  • Fonseca, Susana C. (CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa) ;
  • Ramos, Oscar S. (CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa) ;
  • Pintado, Manuela E. (CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa) ;
  • Malcata, F. Xavier (CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa)
  • Published : 2010.02.28

Abstract

Antimicrobial finishing of textiles has been found to be an economical way to prevent (or treat) skin disorders. Hence, this research effort was aimed at elucidating the relationship between the molecular weight (MW) of chitosan and its antimicrobial activity upon six dermal reference microorganisms, as well as the influence of the interactions with cotton fabrics on said activity. Using 3 chitosans with different MWs, as well as two chitooligosaccharide (COS) mixtures, a relevant antimicrobial effect was observed by 24 h for the six microorganisms tested; it was apparent that the antimicrobial effect is strongly dependent on the type of target microorganism and on the MW of chitosan - being higher for lower MW in the case of E. coli, K. pneumoniae, and P. aeruginosa, and the reverse in the case of both Gram-positive bacteria. Furthermore, a strong antifungal effect was detectable upon C. albicans, resembling the action over Gram-positive bacteria. Interactions with cotton fabric resulted in a loss of COS activity when compared with cultured media, relative to the effect over Gram-negative bacteria. However, no significant differences for the efficacy of all the 5 compounds were observed by 4 h. The three chitosans possessed a higher antimicrobial activity when impregnated onto the fabric, and presented a similar effect on both Gram-positive bacteria and yeast, in either matrix. Pseudomonas aeruginosa showed to be the most resistant microorganism to all five compounds.

Keywords

References

  1. Chien, P.-J., F. Sheu, W.-T. Huang, and M.-S. Su. 2007. Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chem. 102: 1192-1198. https://doi.org/10.1016/j.foodchem.2006.07.007
  2. Chung, Y. C., C. L. Kuo, and C. C. Chen. 2005. Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technol. 96: 1473-1482. https://doi.org/10.1016/j.biortech.2004.12.001
  3. Chunmeng, S., Z. Ying, R. Xinze, W. Meng, S. Yongping, and C. Tianmin. 2006. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J. Surg. Res. 133: 185-192. https://doi.org/10.1016/j.jss.2005.12.013
  4. Devlieghere, F., L. Vermeiren, and J. Debevere. 2004. New preservation technologies: Possibilities and limitations. Int. Dairy J. 14: 273-285. https://doi.org/10.1016/j.idairyj.2003.07.002
  5. Ferrera, P. C., M. L. Dupree, and V. P. Verdile. 1996. Dermatologic problems encountered in the emergency department. Am. J. Emerg. Med. 14: 588-601. https://doi.org/10.1016/S0735-6757(96)90108-4
  6. Gerasimenko, D. V., I. D. Avdienko, G. E. Bannikova, O. Y. Zueva, and V. P. Varlamov. 2003. Antibacterial effects of watersoluble low molecular-weight chitosans on different microorganisms. Appl. Biochem. Microbiol. 40: 253-257.
  7. Gupta, D. and A. Haile. 2006. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 69: 164-171.
  8. Hancock, R. W. E. and D. P. Speert. 2000. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impact on treatment. Drug Resist. Updates 3: 247-255. https://doi.org/10.1054/drup.2000.0152
  9. Izadpanah, A. and R. L. Gallo. 2005. Antimicrobial peptides. J. Am. Acad. Dermatol. 52: 381-390. https://doi.org/10.1016/j.jaad.2004.08.026
  10. Jayakumar, R., N. Nwe, S. Tokura, and H. Tamura. 2007. Int. J. Biol. Macromol. 40: 175-181. https://doi.org/10.1016/j.ijbiomac.2006.06.021
  11. Jeon, Y.-J. and S.-K. Kim. 2000. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr. Polym. 41: 133-141. https://doi.org/10.1016/S0144-8617(99)00084-3
  12. Jeon, Y.-J., P.-J. Park, and S.-K. Kim. 2001. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 44: 71-76. https://doi.org/10.1016/S0144-8617(00)00200-9
  13. Kim, D.-G., Y.-I. Jeong, C. Choi, S.-H. Roh, S.-K. Kang, M.-K. Jang, and J.-W. Nah. 2006. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 319: 130-138. https://doi.org/10.1016/j.ijpharm.2006.03.040
  14. Kim, S.-K. and N. Rajapakse. 2005. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62: 357-368. https://doi.org/10.1016/j.carbpol.2005.08.012
  15. Lee, H.-W., Y.-S. Park, J.-S. Jung, and W.-S. Shin. 2002. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe 8: 319-324. https://doi.org/10.1016/S1075-9964(03)00030-1
  16. Lim, S. H. and S. M. Hudson. 2003. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J. Macromol. Sci. Polym. Rev. C43: 223-269.
  17. Lim, S. H. and S. M. Hudson. 2004. Application of a fiberreactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr. Polym. 56: 227-234. https://doi.org/10.1016/j.carbpol.2004.02.005
  18. Liu, H., Y. Du, J. Yang, and H. Zhu. 2004. Structural characterization and antimicrobial activity of chitosan/betaine derivative complex. Carbohydr. Polym. 55: 291-297. https://doi.org/10.1016/j.carbpol.2003.10.001
  19. Liu, N., X.-G. Chen, H.-J. Park, C.-G. Liu, C.-S. Liu, X.-H. Meng, and L.-J. Yu. 2006. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 64: 60-65. https://doi.org/10.1016/j.carbpol.2005.10.028
  20. Liu, X. F., Y. L. Guan, D. Z. Yang, Z. Li, and K. Yao. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci. 79: 1324-1335. https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L
  21. Nikaido, H. and R. E. W. Hancock. 1986. Outer membrane permeability of Pseudomonas aeruginosa, pp. 145-193. In J. R. Sokatch (ed.). The Bacteria: A Treatise on Structure and Function. Academic Press, London, U.K.
  22. No, H. K., N. Y. Park, S. H. Lee, and S. P. Meyers. 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74: 65-72. https://doi.org/10.1016/S0168-1605(01)00717-6
  23. Qi, L., Z. Xu, X. Jiang, C. Hu, and X. Zou. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 339: 2693-2700. https://doi.org/10.1016/j.carres.2004.09.007
  24. Qin, C., H. Li, Q. Xiao, Y. Liu, J. Zhu, and Y. Du. 2006. Watersolubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 63: 367-374. https://doi.org/10.1016/j.carbpol.2005.09.023
  25. Ravi-Kumar, M. M. N. V., R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb. 2004. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104: 6017-6084. https://doi.org/10.1021/cr030441b
  26. Rhoades, J. and S. Roller. 2000. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl. Environ. Microbiol. 66: 80-86. https://doi.org/10.1128/AEM.66.1.80-86.2000
  27. Ruparelia, J. P., A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4: 707-716. https://doi.org/10.1016/j.actbio.2007.11.006
  28. Shahidi, F., V. A. Janak-Kamil, and Y.-J. Jeon. 1999. Food applications of chitin and chitosans. Trends Food Sci. Tech. 10: 37-51. https://doi.org/10.1016/S0924-2244(99)00017-5
  29. Suzuki, K., T. Mikami, Y. Okawa, A. Tokoro, S. Suzuki, and M. Suzuki. 1986. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151: 403-408. https://doi.org/10.1016/S0008-6215(00)90359-8
  30. Tavaria, F., I. Reis, M. Paulo, M. Pintado, and F. X. Malcata. 2007. Effect of chitosans on skin-borne microorganisms. Adv. Chitin Sci. 10: 333-338.
  31. Thestrup-Pedersen, K. 1996. The incidence and pathophysiology of atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 7: S3-S7. https://doi.org/10.1016/0926-9959(96)00033-5
  32. Tikhonov, V. E., E. A. Stepnova, V. G. Babak, I. A. Yamskov, J. Palma-Guerrero, H.-B. Jansson, et al. 2006. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr. Polym. 64: 66-72. https://doi.org/10.1016/j.carbpol.2005.10.021
  33. Tokoro, A., N. Tatewaki, K. Suzuki, T. Mikami, S. Suzuki, and M. Suzuki. 1988. Growth-inhibitory effect of hexa-Nacetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem. Pharmac. Bull. 36: 784-790. https://doi.org/10.1248/cpb.36.784
  34. Tsukada, K., T. Matsumoto, K. Aizawa, A. Tokoro, R. Naruse, S. Suzuki, and M. Suzuki. 1990. Antimetastatic and growthinhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Japan. J. Canc. Res. 81: 259-265. https://doi.org/10.1111/j.1349-7006.1990.tb02559.x
  35. Uchida, Y., M. Izume, and A. Ohtakara. 1989. Preparation of chitosan oligomers with purified chitosanase and its application, pp. 373-382. In G. Skjak-Broek, T. Anthonsen, and P. Sandford (eds.). Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. Elsevier Applied Science, London, U.K.
  36. Ueno, K., T. Yamaguchi, N. Sakairi, and S. Tokura. 1997. Antimicrobial activity by fractionated chitosan oligomers. Adv. Chitin Sci. 2: 156-161.
  37. Vernazza, C. L., G. R. Gibson, and R. A. Rastall. 2005. In vitro fermentation of chitosan derivatives by mixed cultures of human faecal bacteria. Carbohydr. Polym. 60: 539-545. https://doi.org/10.1016/j.carbpol.2005.03.008
  38. Wang, G. H. 1992. Inhibition and inactivation of five species of foodborne pathogens by chitosan. J. Food Protect. 55: 916-919.
  39. Wang, X., Y. Du, L. Fan, H. Liu, and Y. Hu. 2005. Chitosanmetal complexes as antimicrobial agent: Synthesis, characterization and structure-activity study. Polym. Bull. 55: 105-113. https://doi.org/10.1007/s00289-005-0414-1
  40. Wu, Y.-B., S.-H. Yu, F.-L. Mi, C.-W. Wu, S.-S. Shyu, C.-H. Peng, and A.-C. Chao. 2004. Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends. Carbohydr. Polym. 57: 435-440. https://doi.org/10.1016/j.carbpol.2004.05.013
  41. Xia, W. S. and Y. N. Wu. 1996. Functional properties of chitooligosaccharides. J. Wuxi University Light Industry 15: 297-302.
  42. Zheng, L.-Y. and J.-F. Zhu. 2003. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym. 54: 527-530. https://doi.org/10.1016/j.carbpol.2003.07.009

Cited by

  1. Application of electron beam plasma for biopolymers modification vol.370, pp.1, 2010, https://doi.org/10.1088/1742-6596/370/1/012012
  2. Layer‐by‐layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles vol.24, pp.11, 2013, https://doi.org/10.1002/pat.3176
  3. Rapid Sonosynthesis of N‐Doped Nano TiO2 on Wool Fabric at Low Temperature: Introducing Self‐cleaning, Hydrophilicity, Antibacterial/Antifungal Properties with low Alkali Solubi vol.90, pp.6, 2010, https://doi.org/10.1111/php.12324
  4. Sonochemical Coating of Textiles with Hybrid ZnO/Chitosan Antimicrobial Nanoparticles vol.6, pp.2, 2010, https://doi.org/10.1021/am404852d
  5. New biomaterial based on cotton with incorporated Biomolecules vol.131, pp.15, 2010, https://doi.org/10.1002/app.40519
  6. Sonosynthesis of nano TiO2 on wool using titanium isopropoxide or butoxide in acidic media producing multifunctional fabric vol.21, pp.5, 2010, https://doi.org/10.1016/j.ultsonch.2014.03.009
  7. The Beneficial Effect of Chitooligosaccharides on Cell Behavior and Function of Primary Schwann Cells is Accompanied by Up-Regulation of Adhesion Proteins and Neurotrophins vol.39, pp.11, 2014, https://doi.org/10.1007/s11064-014-1387-y
  8. Chitooligosaccharides as novel ingredients of fermented foods vol.6, pp.11, 2015, https://doi.org/10.1039/c5fo00546a
  9. Biodegradable chitosan nanoparticles in drug delivery for infectious disease vol.10, pp.10, 2010, https://doi.org/10.2217/nnm.15.7
  10. Healthcare Laundry and Textiles in the United States: Review and Commentary on Contemporary Infection Prevention Issues vol.36, pp.9, 2010, https://doi.org/10.1017/ice.2015.135
  11. Study on inhibitory activity of chitosan-based materials against biofilm producing Pseudomonas aeruginosa strains vol.30, pp.3, 2010, https://doi.org/10.1177/0885328215578781
  12. Simultaneous sonosynthesis and sonofabrication of N-doped ZnO/TiO2 core-shell nanocomposite on wool fabric: Introducing various properties specially nano photo bleaching vol.27, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2015.04.017
  13. In situ photo sonosynthesis and characterize nonmetal/metal dual doped honeycomb-like ZnO nanocomposites on wool fabric vol.27, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2015.05.021
  14. Does nanobiotechnology create new tools to combat microorganisms? vol.6, pp.2, 2010, https://doi.org/10.1515/ntrev-2016-0042
  15. Does nanobiotechnology create new tools to combat microorganisms? vol.6, pp.2, 2010, https://doi.org/10.1515/ntrev-2016-0042
  16. Antimicrobial nanomaterials against biofilms: an alternative strategy vol.25, pp.2, 2010, https://doi.org/10.1139/er-2016-0046
  17. Comparison of methods for determining the effectiveness of antibacterial functionalized textiles vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0188304
  18. Chitosan’s biological activity upon skin-related microorganisms and its potential textile applications vol.34, pp.7, 2010, https://doi.org/10.1007/s11274-018-2471-2
  19. Efficient Immobilization of Bacterial GH Family 46 Chitosanase by Carbohydrate-Binding Module Fusion for the Controllable Preparation of Chitooligosaccharides vol.67, pp.24, 2010, https://doi.org/10.1021/acs.jafc.9b01608
  20. Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations vol.7, pp.9, 2010, https://doi.org/10.3390/microorganisms7090356
  21. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action vol.20, pp.23, 2019, https://doi.org/10.3390/ijms20235889
  22. Streptococcus mutans Growth and Resultant Material Surface Roughness on Modified Glass Ionomers vol.1, pp.None, 2010, https://doi.org/10.3389/froh.2020.613384
  23. Synthesis and Characterization of Chitosan Filtration Membranes with Enhanced Antimicrobial Properties vol.2, pp.1, 2010, https://doi.org/10.1134/s2517751620010084
  24. Chitooligosaccharide as A Possible Replacement for Sulfur Dioxide in Winemaking vol.10, pp.2, 2020, https://doi.org/10.3390/app10020578
  25. Anti-Pathogenic Functions of Non-Digestible Oligosaccharides In Vitro vol.12, pp.6, 2010, https://doi.org/10.3390/nu12061789
  26. Development and Characterization of Weft-Knitted Fabrics of Naturally Occurring Polymer Fibers for Sustainable and Functional Textiles vol.13, pp.4, 2021, https://doi.org/10.3390/polym13040665
  27. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics vol.10, pp.12, 2010, https://doi.org/10.3390/antibiotics10121473