DOI QR코드

DOI QR Code

Functional Roles of the Aromatic Residues in the Stabilization of the [$Fe_4S_4$] Cluster in the Iro Protein from Acidithiobacillus ferrooxidans

  • Zeng, Jia (Center for Biomedical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University) ;
  • Liu, Qing (Department of Bioengineering, Central South University) ;
  • Zhang, Xiaojian (Department of Bioengineering, Central South University) ;
  • Mo, Hongyu (Department of Bioengineering, Central South University) ;
  • Wang, Yiping (Department of Bioengineering, Central South University) ;
  • Chen, Qian (Department of Bioengineering, Central South University) ;
  • Liu, Yuandong (Department of Bioengineering, Central South University)
  • Published : 2010.02.28

Abstract

The Iro protein is a member of the HiPIP family with the [$Fe_4S_4$] cluster for electron transfer. Many reports proposed that the conserved aromatic residues might be responsible for the stability of the iron-sulfur cluster in HiPIP. In this study, Tyr10 was found to be a critical residue for the stability of the [$Fe_4S_4$] cluster, according to site-directed mutagenesis results. Tyr10, Phe26, and Phe48 were essential for the stability of the [$Fe_4S_4$] cluster under acidic condition. Trp44 was not involved in the stability of the [$Fe_4S_4$] cluster. Molecular structure modeling for the mutant Tyr10 proteins revealed that the aromatic group of Tyr10 may form a hydrophobic barrier to protect the [$Fe_4S_4$] cluster from solvent.

Keywords

References

  1. Agarwal, A., D. Li, and J. A. Cowan. 1995. Role of aromatic residues in stabilization of the [Fe4S4] cluster in high-potential Iro proteins (HiPIPs): Physical characterization and stability studies of Tyr-19 mutants of Chromatium vinosum HiPIP. Proc. Natl. Acad. Sci. U.S.A. 92: 9440-9444. https://doi.org/10.1073/pnas.92.21.9440
  2. Banci, L., I. Bertini, A. Dikiy, D. H. Kastrau, C. Luchinat, and P. Sompornpisut. 1995. The three-dimensional solution structure of the reduced high-potential iron-sulfur protein from Chromatium vinosum through NMR. Biochemistry 34: 206-219. https://doi.org/10.1021/bi00001a025
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cavazza, C., B. Guigliarelli, P. Bertrand, and M. Bruschi. 1995. Biochemical and EPR characterization of a high potential iron-sulfur protein in Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 130: 193-200. https://doi.org/10.1111/j.1574-6968.1995.tb07719.x
  5. Fukumori, Y., T. Yano, A. Sato, and T. Yamanaka. 1988. Fe(II)-oxidizing enzyme purified from Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 50: 169-172. https://doi.org/10.1111/j.1574-6968.1988.tb02932.x
  6. Iwagami, S. G.., A. L. Creagh, C. A. Haynes, M. Borsari, I. C. Felli, M. Piccioli, and L. D. Eltis. 1995. The role of a conserved tyrosine residue in high-potential iron-sulfur proteins. Protein Sci. 4: 2562-2572. https://doi.org/10.1002/pro.5560041213
  7. Kerfeld, C. A., A. E. Salmeen, and T. O. Yeates. 1998. Crystal structure and possible dimerization of the high-potential iron-sulfur protein from Chromatium purpuratum. Biochemistry 37: 13911-13917. https://doi.org/10.1021/bi9810252
  8. Kusano, T., T. Takeshima, K. Sugawara, C. Inoue, T. Shiratori, T. Yano, Y. Fukumori, and T. Yamanaka. 1992. Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(II) oxidase. High homology of the gene product with HiPIP. J. Biol. Chem. 267: 11242-11247.
  9. Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  10. Lovenberg, W., B. B. Buchanan, and J. C. Rabinowitz. 1963. Studies on the chemical nature of clostridial ferredoxin. J. Biol. Chem. 238: 3899-3913.
  11. Mansy, S. S., Y. Xiong, C. Hemann, R. Hille, M. Sundaralingam, and J. A. Cowan. 2002. Crystal structure and stability studies of C77S HiPIP: A serine ligated [4Fe-4S] cluster. Biochemistry 41: 1195-1201. https://doi.org/10.1021/bi011811y
  12. Nouailler, M., P. Bruscella, E. Lojou, R. Lebrun, V. Bonnefoy, and F. Guerlesquin. 2006. Structural analysis of the HiPIP from the acidophilic bacteria: Acidithiobacillus ferrooxidans. Extremophiles 10: 191-198. https://doi.org/10.1007/s00792-005-0486-8
  13. Rawlings, D. E. 2001. The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, iron- or sulfur-oxidizing bacteria. Hydrometallurgy 59: 187-201. https://doi.org/10.1016/S0304-386X(00)00182-1
  14. Rayment, I., G.. Wesenberg, T. E. Meyer, M. A. Cusanovich, and H. M. Holden. 1992. Three-dimensional structure of the high-potential iron-sulfur protein isolated from the purple phototrophic bacterium Rhodocyclus tenuis determined and refined at 1.5 $\AA$ resolution. J. Mol. Biol. 228: 672-686. https://doi.org/10.1016/0022-2836(92)90849-F
  15. Siegel, L. M. 1965. A direct microdetermination for sulfide. Anal. Biochem. 11: 126-132. https://doi.org/10.1016/0003-2697(65)90051-5
  16. Yamanaka, T. and Y. Fukumori. 1995. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 17: 401-413. https://doi.org/10.1111/j.1574-6976.1995.tb00222.x
  17. Zeng, J., M. Geng, Y. Liu, W. Zhao, L. Xia, J. Liu, and G. Qiu. 2007. Expression, purification and molecular modeling of the Iro protein from Acidithiobacillus ferrooxidans Fe-1. Protein Expr. Purif. 52: 146-152. https://doi.org/10.1016/j.pep.2006.09.018