DOI QR코드

DOI QR Code

A Genetically Engineered Pseudomonas fluorescens Strain Possesses Dual Activity Against Phytopathogenic Fungi and Insects

  • Lu, Wenwei (College of Life and Environment Sciences, Shanghai Normal University) ;
  • Zhang, Weiqiong (College of Life and Environment Sciences, Shanghai Normal University) ;
  • Bai, Yan (College of Life and Environment Sciences, Shanghai Normal University) ;
  • Fu, Yingying (College of Life and Environment Sciences, Shanghai Normal University) ;
  • Chen, Jun (College of Life and Environment Sciences, Shanghai Normal University) ;
  • Geng, Xiaolu (College of Life and Environment Sciences, Shanghai Normal University) ;
  • Wang, Yujing (College of Life and Environment Sciences, Shanghai Normal University) ;
  • Xiao, Ming (College of Life and Environment Sciences, Shanghai Normal University)
  • Published : 2010.02.28

Abstract

A Pseudomonas fluorescens strain was isolated and found to show antagonistic activity against phytopathogenic fungi and to possess a gene responsible for production of antibiotic 2,4-diacetylphloroglucinol. For the extension of biocontrol range, a gene for an Androetonus australis Hector insect toxin 1 (AaHIT1), one of the most known toxic insect-selective peptides, was designed and synthesized according to the preferred codon usage of Pseudomonas fluorescens, cloned, and transformed into the strain by pSUP106 vector, a broad-host-range plasmid. Bioassays indicated that the engineered strain was able to produce AaHIT1 with insecticidal activity, and at the same time retain the activity against plant pathogen. The experiments for nonplanted soil and rhizosphere colonization showed that, similar to the population of the wild-type strain, that of the engineered strain remained relatively constant in the first 10 days, and the subsequent 50 days, suggesting that AaHIT1 expression in the bacterial cell does not substantially impair its long-term colonization. It is first reported that a Pseudomonas fluorescens strain expressing an active scorpion neurotoxin has dual activity against phytopathogenic fungi and insects, making at attractive for agronomic applications.

Keywords

References

  1. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1995. Short Protocols in Molecular Biology. John Wiley & Sons, Inc., New York, NY.
  2. Bangera, M. G. and L. S. Thomashow. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol. 181: 3155-3163.
  3. Calogero, R. A., C. L. Pon, M. A. Canonaco, and C. O. Gualerzi. 1988. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc. Natl. Acad. Sci. U.S.A. 85: 6427-6431. https://doi.org/10.1073/pnas.85.17.6427
  4. Cory, J. S., M. L. Hirst, T. Williams, R. S. Halls, and D. Gouson. 1994. Field trial of a genetically improved baculovirus insecticide. Nature 370: 138-140. https://doi.org/10.1038/370138a0
  5. Darbon, H., C. Weber, and W. Braun. 1991.Two dimensional $1^H$ nuclear magnetic resonance study of AaH IT, an anti-insect toxin from Androctonus australis Hector. Sequential resonance assignments and folding of the polypeptide chain. Biochemistry 30: 1836-1845. https://doi.org/10.1021/bi00221a016
  6. Delany, I., M. M. Sheehan, A. Fenton, S. Bardin, S. Aarons, and F. O'Gara. 2000. Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: Genetic analysis of phlF as a transcriptional repressor. Microbiology 146: 537-546.
  7. Farinha, M. A. and A. H. Kropinski, 1990. High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiol. Lett. 70: 221-226.
  8. Fenton, A. M., P. M. Stephens, J. Crowley, M. O'Callaghan, and F. O'Gara. 1992. Exploitation of gene(s) involved in 2,4- diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl. Environ. Microbiol. 58: 3873-3878.
  9. Hao, C., C. Xu, W. Wang, B. Chai, and A. Liang. 2005. Expression of an insect excitatory toxin, BmK IT, from the scorpion, Buthus martensii Karsch, and its biological activity. Biotechnol. Lett. 27: 1929-1934. https://doi.org/10.1007/s10529-005-3905-0
  10. Jayaraj, J., T. Parthasarathi, and N. V. Radhakrishnan. 2007. Characterization of a Pseudomonas fluorescens strain from tomato rhizosphere and its use for integrated management of tomato damping-off. Biocontrol 52: 683-702. https://doi.org/10.1007/s10526-006-9046-0
  11. Jiang, G., Y. Xu, X. Zhu, Y. Su, and Y. Zhu. 2001. Prokaryotically expressed Buthus martensii Karsch insect depressant toxin has insecticidal effects. Toxicon 39: 469-476. https://doi.org/10.1016/S0041-0101(00)00115-X
  12. Kamilova, F., G. Lamers, and B. Lugtenberg. 2008. Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ. Microbiol. 10: 2455-2461. https://doi.org/10.1111/j.1462-2920.2008.01638.x
  13. Keel, C., U. Schnider, M. Maurhofer, C. Voisard, J. Laville, U. Burger, P. Wirthner, and D. Haas. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molec. Plant Microbe Interact. 5: 4-13. https://doi.org/10.1094/MPMI-5-004
  14. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307.
  15. Komarova, A. V., L. S. Tchufistova, and E. V. Supina. 2002. Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA 8: 1137-1147. https://doi.org/10.1017/S1355838202029990
  16. Kurbanova, I. V., V. A. Velikov, and M. I. Chumakov. 2001. Expression of VirB2 protein-containing structures on Agrobacterium in mating cultures. Antonie Van Leeuwenhoek 79: 291-295. https://doi.org/10.1023/A:1012274719519
  17. Leeman, M., J. A. Van Pelt, F. M. Den Ouden, M. Heinsbroek, P. A. H. M. Bakker, and B. Schippers. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 1021-1027. https://doi.org/10.1094/Phyto-85-1021
  18. Martin-Eauclaire, M. F., M. Sogaard, C. Ramos, S. Cestele, P. E. Bougis, and B. Svensson. 1994. Production of active, insectspecific scorpion neurotoxin in yeast. Eur. J. Biochem. 223: 637-645. https://doi.org/10.1111/j.1432-1033.1994.tb19036.x
  19. Melançon, P., D. Leclerc, N. Destroismaisons, and L. Brakier-Gingras. 1990. The anti-Shine-Dalgarno region in Escherichia coli 16S ribosomal RNA is not essential for the correct selection of translational starts. Biochemistry 29: 3402-3407. https://doi.org/10.1021/bi00465a037
  20. Pechy-Tarr, M., D. J. Bruck, M. Maurhofer, E. Fischer, C. Vogne, M. D. Henkels, et al. 2008. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ. Microbiol. 10: 2368-2386. https://doi.org/10.1111/j.1462-2920.2008.01662.x
  21. Peng, R., A. Xiong, X. Li, H. Fuan, and Q. Yao. 2003. A deltaendotoxin encoded in Pseudomonas fluorescens displays a high degree of insecticidal activity. Appl. Microbiol. Biotechnol. 63: 300-306. https://doi.org/10.1007/s00253-003-1343-2
  22. Priefer, U. B., R. Simon, and A. Pühler. 1985. Extension of the host range of Escherichia coli vectors by incorporation of replication and mobilization functions. J. Bacteriol. 163: 324-330.
  23. Rhouma, R. B. H., M. Cerutti-Duonor, K. Benkhadir, F. Goudey-Perriere, M. E. Ayeb, M. Lopez-Ferber, and H. Karoui. 2005. Insecticidal effects of Buthus occitanus tunetanus BotIT6 toxin expressed in Eschericchia coli and baculovirus/insect cells. J. Insect Physiol. 51: 1376-1383. https://doi.org/10.1016/j.jinsphys.2005.08.008
  24. Seong, L. H., J. M. Lee, and S. D. Kim. 2002. A plant growthpromoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257.
  25. Walsh, U. F., J. P. Morrissey, and F. O'Gara. 2001. Pseudomonas for biocontrol of phytopathogens: From functional genomics to commercial exploitation. Curr. Opin. Biotechnol. 12: 289-295. https://doi.org/10.1016/S0958-1669(00)00212-3
  26. Wang, C. and R. J. St. Legal. 2007. A scorpion neurotoxin increases the potency of a fungal insecticide. Nat. Biotechnol. 25: 1455-1456. https://doi.org/10.1038/nbt1357
  27. Wang, Y., M. Xiao, X. Geng, J. Liu, and J. Chen. 2007. Horizontal transfer of genetic determinants for degradation of phenol between the bacteria living in plant and its rhizosphere. Appl. Microbiol. Biotechnol. 77: 733-739. https://doi.org/10.1007/s00253-007-1187-2
  28. Weissburg, W. G., S. M. Barns, D. A. Pelletier, and D. L. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  29. Zha, W., S. B. Rubin-Pitel, and H. Zhao. 2006. Characterization of the substrate specificity of PhlD, a type III polyketide synthase from Pseudomonas fluorescens. J. Biol. Chem. 281: 32036-32047. https://doi.org/10.1074/jbc.M606500200
  30. Zlotkin, E., Y. Fishman, and M. Elazar. 2000. AaIT: From neurotoxin to insecticide. Biochimie 82: 869-881. https://doi.org/10.1016/S0300-9084(00)01177-9
  31. Zlotkin, E., D. Kadouri, D. Gordon, M. Pelhate, M. F. Martin, and H. Rochat. 1985. An excitatory and depressant insect toxin from scorpion venom both affect sodium conductance and possess a common binding site. Arch. Biochem. Biophys. 240: 870-887.

Cited by

  1. Involvement of Epidermal Growth Factor Receptor-Linked Signaling Responses in Pseudomonas fluorescens-Infected Alveolar Epithelial Cells vol.79, pp.5, 2010, https://doi.org/10.1128/iai.01232-10
  2. The internal bacterial diversity of stored product pests vol.66, pp.2, 2010, https://doi.org/10.1007/s13213-015-1155-5