WEAKLY CANCELLATIVE ELEMENTS IN SEMIGROUPS

  • Published : 2010.02.28

Abstract

This paper gives some sorts of weakly cancellative of elements which are to be or not to be left magnifying elements in certain semigroups and gives a semilattice congruence in a weakly separative semigroup.

Keywords

References

  1. F. Catio & F. Migliorini: Magnifying elements in semigroups. Semigroup Forum 44 (1992), 314-319. https://doi.org/10.1007/BF02574350
  2. F. Catio & M. G. Murciano: On certain semigroups without increasing elements. Note di Mathematica 3 (1983), 1-13.
  3. H. Jurgensen, F. Migliorini & J. Szep: Semigroups. Akademini. Kiado, Budapest, 1991.
  4. T.L. Chrilochl: On medial semigroups. J. Algebra 12 (1969), 1-9. https://doi.org/10.1016/0021-8693(69)90013-1
  5. U. Knauer: Characterizations of monoids by properties of finitely generated right acts and their right ideals. LNM 998, Springer-Verlag (1981), 310-332.
  6. E.S. Ljapin: Semigroups. Transl. Math. Monographs 3 Providence R. I. 1963.
  7. S. Lajos: Note on (2,2) - commutative semigroups. PU.M.A. Ser. A1 (1990), no. 2, 119-126.
  8. K.D. Magill Jr: Magnifying elements of transformation semigroups. Semigroup Forum 48 (1994), 119-126. https://doi.org/10.1007/BF02573659
  9. F. Migliorini: Magnifying elements and minimal subsemigroups. Period. Math. Hung. 5 (1974), no. 4, 279-288. https://doi.org/10.1007/BF02018183
  10. F. Migliorini: Some reseraches on semigroups with magnifying elements. Period. Math. Hung. 1 (1971), 276-286.
  11. M. Petrich: Introduction to semigroups. C. E. Merril Publ. Co. Columbus, Ohio, 1973.
  12. K. Tolo: Factorizable semigroups. Pacific J. Math. 31 (1969), 523-535. https://doi.org/10.2140/pjm.1969.31.523