Abstract
We propose a system that automatically recognizes the tense or relaxed condition of scrolling-shooting game subject that plays. Existing study compares the changed values of source of stimulation to the player by suggesting the source, and thus involves limitation in automatic classification. This study applies SOM of unsupervised learning for automatic classification and recognition of player's condition change. Application of SOM for automatic recognition of tense and relaxed condition is composed of two steps. First, ECG measurement and analysis, is to extract characteristic vector through HRV analysis by measuring ECG after having the player play the game. Secondly, SOM learning and recognition, is to classify and recognize the tense and relaxed conditions of player through SOM learning of the input vectors of heart beat signals that the characteristic extracted. Experiment results are divided into three groups. The first is HRV frequency change and the second the SOM learning results of heart beat signal. The third is the analysis of match rate to identify SOM learning performance. As a result of matching the LF/HF ratio of HRV frequency analysis to the distance of winner neuron of SOM based on 1.5, a match rate of 72% performance in average was shown.
본 연구에서는 비행슈팅게임을 플레이하는 피험자의 긴장 또는 이완상태를 자동으로 인식하는 시스템을 제안한다. 기존 연구에서는 피험자에게 자극원을 제시하여 나타난 변화 값을 비교하기 때문에 자동으로 분류하는데 한계가 있었다. 본 연구에서는 피험자의 상태 변화를 자동으로 분류하여 인식할 수 있도록 비지도학습의 SOM을 적용한다. 긴장과 이완상태의 자동인식을 위한 SOM의 적용은 두 가지 단계로 구성된다. 첫 번째 단계는 ECG측정 및 분석으로 피험자에게 게임을 플레이하게 한 후 ECG를 측정하여 HRV 분석으로 특징벡터를 추출한다. 두 번째 단계는 SOM 학습 및 인식으로 특징이 추출된 심박신호의 입력벡터들을 SOM으로 학습하여 피험자의 긴장과 이완상태를 분류하여 인식 한다. 실험 결과는 세 가지로 나누어진다. 첫 번째, HRV의 주파수변화와 두 번째 심박신호의 SOM 학습결과를 나타냈다. 세 번째 단계는 SOM학습의 성능을 알기 위해서 매칭율을 분석했다. HRV의 주파수분석의 LF/HF 비율을 1.5 기준으로 SOM의 승자뉴런 거리와 매칭한 결과 평균 72%의 매칭율을 보였다.