DOI QR코드

DOI QR Code

Preparation and Characterization of Electrospun TiO2-Activated Carbon Complex Fiber as Photocatalyst

  • Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jeong, Eui-Gyung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jang, Jeen-Seok (Chungbuk Regional Small & Medium Business Administration) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • Received : 2010.02.05
  • Accepted : 2010.03.12
  • Published : 2010.03.30

Abstract

In this study, $TiO_2$-Activated carbon (AC) complex fibers were prepared by electrospinning for the synergetic effect of adsorption and degradation of organic pollutant. The average diameter of these fibers increased with increasing the amount of AC added, except for 1AC-TOF (AC$/TiO_2$ =1/40 mass ratio). After calcinations at $500^{\circ}C$, long as-spun fibers were broken and their average diameter was slightly decreased. The resultant fibers after calcination had rough surface and sphere shapes like a peanut. From XRD results, it was confirmed that as-spun fibers were changed to anatase $Ti_O2$ fiber after calcinations at $500^{\circ}C$. The prepared $TiO_2$-AC complex fibers could remove procian blue dyes by solar light irradiation with high removal property of 94~99%. The PB dye was rapidly removed by adsorption during the initial 5 minutes. But after 5 minutes, dye removal was occurred by photodegradation. In this study, the most efficient AC/$TiO_2$ ratio of $TiO_2$-AC complex fibers was 5/40, showing the synergetic effect of adsorption and photodegradation. It is expected that the $TiO_2$-AC complex fibers can be used to remove of organic pollutants in water system.

Keywords

References

  1. Tryba, B.; Morawski, A. W.; Inagaki, M. Appl. Catal. B Environ. 2003, 41, 427. https://doi.org/10.1016/S0926-3373(02)00173-X
  2. Mrowetz, M.; Pirola C.; Selli E. Ultrason. Sonochem. 2003, 10, 247. https://doi.org/10.1016/S1350-4177(03)00090-7
  3. Chatterjee, D.; Dasgupta, Shimanti. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 186. https://doi.org/10.1016/j.jphotochemrev.2005.09.001
  4. Palanivelu, K.; Im, J. S.; Lee, Y. S. Carbon Lett. 2007, 8, 214. https://doi.org/10.5714/CL.2007.8.3.214
  5. Rizzo, L.; Koch, J.; Belgiorno, V.; Anderson, M. A. Desalination 2007, 211,1. https://doi.org/10.1016/j.desal.2006.02.081
  6. Yang, J.; Zhang, J.; Zhu, L.; Chen, S.; Zhang, Y.; Tang, Y.; Zhu, Y.; Li, Y. J. Hazard. Mater. B 2006, 137, 952. https://doi.org/10.1016/j.jhazmat.2006.03.017
  7. Kedem, S.; Schmidt, J.; Paz, Y.; Cohen, Y. Langmuir 2005, 21, 5600.
  8. Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. J. Appl. Phys. 2000, 87, 4531. https://doi.org/10.1063/1.373532
  9. Ali, R.; Bakar, W. A.; Teck, L .K. Modern Applied Science 2010, 4, 59.
  10. Sakka, S. "Handbook of sol-gel science and technology, vol III: processing characterization and applications", Kluwer Academic Press, Boston, 2004, 369.
  11. Matos, J.; Laine, J.; Herrman, J. M. Appl. Catal. B: Environ. 1998, 18, 281. https://doi.org/10.1016/S0926-3373(98)00051-4
  12. Herrman, J. M.; Matos, J.; Disdier, J.; Guillard, C.; Laine, J.; Malato, S.; Blanco, J. Catal. Tod. 1999, 54, 255. https://doi.org/10.1016/S0920-5861(99)00187-X
  13. Kim, S. J.; Yun, S. M.; Kim, H.; Kim, J. G.; Lee, Y. S. Carbon Lett. 2009, 10, 123. https://doi.org/10.5714/CL.2009.10.2.123
  14. Jung, M. J.; Im, J. S.; Palanivelu, K.; Kim, T.; Lee, Y. S. J. Nanosci. Nanotechnol. 2010, 10, 297. https://doi.org/10.1166/jnn.2010.1496
  15. Yoshida, A.; Nonaka,S.; Aoki, I.; Nishino A. J. Power Sources 1996, 60, 213. https://doi.org/10.1016/S0378-7753(96)80013-9
  16. Grahn, J. V.; Linder, M.; Fredriksson, E. J. Vac. Sci. Technol. A 1998, 16, 2495. https://doi.org/10.1116/1.581371
  17. Han, W. Q.; Zettl, A. Nano Lett. 2003, 3, 5681.
  18. Kim, C.; Yang, K. S. Carbon Lett. 2002, 3, 210.
  19. Im, J. S.; Kim, M. I.; Lee, Y. S. Mater. Lett. 2008, 62/21-22, 3652.
  20. Grahn, J. V.; Linder, M.; Fredriksson, E. J. Vac. Sci. Technol. A 1998, 16, 2495. https://doi.org/10.1116/1.581371
  21. Yun, S. M.; Palanivelu, K.; Kim, Y. H.; Kang, P. H.; Lee, Y. S. J. Ind. Eng. Chem. 2008, 14, 667. https://doi.org/10.1016/j.jiec.2008.02.010
  22. Lin, L.; Zhou, Y.; Zhu, Y.; Xie, Y. Front. Chem. China 2007, 2, 64. https://doi.org/10.1007/s11458-007-0013-9

Cited by

  1. A review of elemental mercury removal processing vol.12, pp.3, 2011, https://doi.org/10.5714/CL.2011.12.3.121
  2. Preparation and characterization of nickel-coated carbon nanofibers produced from the electropsinning of polyamideimide precursor vol.20, pp.5, 2012, https://doi.org/10.1007/s13233-012-0075-5
  3. Dendrimer–titania nanocomposite: synthesis and dye-removal capacity vol.41, pp.6, 2015, https://doi.org/10.1007/s11164-013-1486-4