Form I Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from CO2-Fixing Chemoautotrophic bacterium, Aeromonas sp. strain JS-1: Purification and Properties

CO2를 고정하는 화학독립영양미생물인 Aeromonas sp. strain JS-1의 Form I Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase 정제 및 특성 파악

  • Na, Suk-Hyun (Department of Environmental Engineering, Chonnam National University) ;
  • Bae, Sang-Ok (Department of Culinary Art, Chodang University) ;
  • Jung, Soo-Jung (Yeongsan River Basin Environmental Office) ;
  • Chung, Seon-Yong (Department of Environmental Engineering, Chonnam National University)
  • Received : 2010.11.09
  • Accepted : 2010.12.20
  • Published : 2010.12.31

Abstract

A new hydrogen-oxidizing bacterium, Aeromonas sp. strain JS-1, that can fix $CO_2$ via the reductive pentose phosphate cycle (Calvin-Benson cycle) under chemoautotrophic conditions but not photoautotrophic conditions was isolated from fresh water. Strain JS-1 showed considerable $CO_2$ fixation ability during continuous cultivation even at high $CO_2$ concentration. Strain JS-1 used $H_2$ and $CO_2$ fixation as energy and carbon sources, respectively. Carbon dioxide fixation is carried out through the Calvin-Benson cycle, in which ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme. Hydrogen-oxidizing chemoautotrophic Aeromonas sp. strain JS-1 exhibited remarkedly strong RubisCO [EC 4.1.1.39] activity. RubisCO was purified as an $L_8S_8$-type hexadecamer with molecular mass of 560 kDa by gel filtration. The enzyme consisted of two different subunits eight large (56 kDa) and eight small (15 kDa), as demonstrated by SDS-PAGE. The specific activity of the purified enzyme was about 3.31 unit/mg and stable up to $45^{\circ}C$. The $K_m$ values for RuBP, $CO_2$, and $Mg^{2+}$ were estimated to be 0.25 mM, 5.2 mM and 0.91 mM, respectively.

Keywords

References

  1. Hollowaya, S., J. M. Pearcea, V. L. Hardsa, T. Ohsumib, and J. Galec (2007) Natural emissions of $CO_{2}$ from the geosphere and their bearing on the geological storage of carbon dioxide. Energy 32: 1194-1201. https://doi.org/10.1016/j.energy.2006.09.001
  2. Wolter, M., S. Prayino, and F. Schuchardt (2004) Green house gas emission during storeage of pig manure on a pilot scale. Bioresour. Technol. 95: 235-244. https://doi.org/10.1016/j.biortech.2003.01.003
  3. Mavroudi, M., S. P. Kaldis, and G. P. Sakellaropoulos (2003) Reduction of $CO_{2}$ emissions by a membrane contacting process. Fuel 82: 2153-2159. https://doi.org/10.1016/S0016-2361(03)00154-6
  4. Skjanesa, K., P. Lindbladb, and J. Mullerc (2007) Bio $CO_{2}$ - A multidisciplinary, biological approach using solar energy to capture $CO_{2}$ while producing $H_{2}$ and high value products. Biomol. Eng. 24: 405-4131. https://doi.org/10.1016/j.bioeng.2007.06.002
  5. Gonzalez, C. V., F. G. Acien Fernandez, J. M. Fernandez Sevilla, J. F. Sanchez Fernández, M. C. Ceron Garcia, and E. Molina Grima (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in $CO_{2}$ removal processes. Bioresour. Technol. 100: 5904-5910. https://doi.org/10.1016/j.biortech.2009.04.070
  6. Hanagata, N., T. Takeuchi, Y. Fukuju, D. J. Barnes, and I. Karube, (1992) Tolerance of microalgae to high $CO_{2}$high temperature. Phytochem. 31: 3345-3348. https://doi.org/10.1016/0031-9422(92)83682-O
  7. Maeda, K., M. Owada, N. Kimura, K. Omata, and I. Karube (1995) $CO_{2}$ fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers. Manage. 36: 717-720. https://doi.org/10.1016/0196-8904(95)00105-M
  8. Robert Tabita, F., J. L. Gibson, B. Botho. D. Lubbert, and G. M. Wim (1992) Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. FEMS Microbiol. Lett. 99: 107-110. https://doi.org/10.1111/j.1574-6968.1992.tb05551.x
  9. Robert Tabita, F. (2007) RubisCO: The Enzyme that Keeps on Giving. Cell 129: 1039-1040. https://doi.org/10.1016/j.cell.2007.06.002
  10. Chung, S. Y., K. Yokoyama, M. Gomi, N. Teaumroong, M. Ishii, Y. Igarashi, and T. Kodama (1994) Purification and some properties of ribulose-1,5-bisphosphate carboxylase/oxygenase from a thermophilic hydrogenoxidizing bacterium, Pseudomonas hydrogenothermophila strain TH-1. J. Ferment. Bioeng. 78: 469-471. https://doi.org/10.1016/0922-338X(94)90049-3
  11. Chung, S. Y., T. Yaguchi, H. Nishihara, Y. Igarashi, and T. Kodama (1993) Purification of form$L_{2}$RubisCO from a marine obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus strain MH-110. FEMS Microbiol. Lett. 109: 49-53. https://doi.org/10.1111/j.1574-6968.1993.tb06142.x
  12. Yaguchi, T., S. Y. Chung, Y. Igarashi, and T. Kodama (1992) Purification of RubisCO from the thermophilic cyanobcterium synechococcus sp. strain a-1. J. Ferment. Bioeng. 73: 348-351. https://doi.org/10.1016/0922-338X(92)90276-Z
  13. Bradford, M. (1976) A rapid and sensitive method for the quantitiation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  14. Laemmli, U. K. (1970) Cleavage of structural proteins during the asembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  15. Kim, T. H., K. D. Sung, J. S. Lee, J. Y. Lee, S. J. Ohh, and H. Y. Lee (1997) Biological Fixation of Carbon Dioxide Using Photosynthetic Microalga, Chlorococcum littorale. Kor. J. Appl. Microbiol. Biotechnol. 25: 235-239.