References
- Janig W, Baron R. Complex regional pain syndrome is a disease of the central nervous system. Clin Auton Res 2002; 12: 150-64. https://doi.org/10.1007/s10286-002-0022-1
- Coderre TJ, Xanthos DN, Francis L, Bennett GJ. Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain 2004; 112: 94-105. https://doi.org/10.1016/j.pain.2004.08.001
- Kwak KH, Han CG, Lee SH, Jeon Y, Park SS, Kim SO, et al. Reactive oxygen species in rats with chronic postischemia pain. Acta Anaesthesiol Scand 2009; 53: 648-56. https://doi.org/10.1111/j.1399-6576.2009.01937.x
- Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, et al. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 2004; 111: 116-24. https://doi.org/10.1016/j.pain.2004.06.008
- Hacimuftuoglu A, Handy CR, Goettl VM, Lin CG, Dane S, Stephens RL Jr. Antioxidants attenuate multiple phases of formalin induced nociceptive response in mice. Behav Brain Res 2006; 173: 211-6. https://doi.org/10.1016/j.bbr.2006.06.030
- Guedes RP, Bosco LD, Teixeira CM, Araujo AS, Llesuy S, Belló-Klein A, et al. Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem Res 2006; 31: 603-9. https://doi.org/10.1007/s11064-006-9058-2
- Park ES, Gao X, Chung JM, Chung K. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett 2006; 391: 108-11. https://doi.org/10.1016/j.neulet.2005.08.055
- Gao X, Kim HK, Chung JM, Chung K. Reactive oxygen species (ROS) are involved in enhancement of NMDAreceptor phosphorylation in animal models of pain. Pain 2007; 131: 262-71. https://doi.org/10.1016/j.pain.2007.01.011
- Zou X, Lin Q, Willis WD. Enhanced phosphorylation of NMDA receptor 1 subunits in spinal cord dorsal horn and spinothalamic tract neurons after intradermal injection of capsaicin in rats. J Neurosci 2000; 20: 6989-97.
- Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 1992; 12: 3665- 70.
- Gao X, Kim HK, Chung JM, Chung K. Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain 2005; 116: 62-72. https://doi.org/10.1016/j.pain.2005.03.045
- Tripatara P, Patel NS, Webb A, Rathod K, Lecomte FM, Mazzon E, et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol 2007; 18: 570-80. https://doi.org/10.1681/ASN.2006050450
- Radovic M, Miloradovic Z, Popovic T, Mihailovic-Stanojevic N, Jovovic D, Tomovic M, et al. Allopurinol and enalapril failed to conserve urinary NOx and sodium in ischemic acute renal failure in spontaneously hypertensive rats. Am J Nephrol 2006; 26: 388-99. https://doi.org/10.1159/000094936
- Lee WY, Lee SM. Synergistic protective effect of ischemic preconditioning and allopurinol on ischemia/reperfusion injury in rat liver. Biochem Biophys Res Commun 2006; 349: 1087-93. https://doi.org/10.1016/j.bbrc.2006.08.140
- Nemeth N, Lesznyak T, Szokoly M, Furka I, Miko I. Allopurinol prevents erythrocyte deformability impairing but not the hematological alterations after limb ischemia reperfusion in rats. J Invest Surg 2006; 19: 47-56. https://doi.org/10.1080/08941930500444511
- Albuquerque RG, Sanson AJ, Malangoni MA. Allopurinol protects enterocytes from hypoxia-induced apoptosis in vivo. J Trauma 2002; 53: 415-20. https://doi.org/10.1097/00005373-200209000-00003
- Levy D, Zochodne DW. Local nitric oxide synthase activity in a model of neuropathic pain. Eur J Neurosci 1998; 10: 1846-55. https://doi.org/10.1046/j.1460-9568.1998.00186.x
- Caban A, Oczkowicz G, Abdel-Samad O, Cierpka L. Influence of ischemic preconditioning and nitric oxide on microcirculation and the degree of rat liver injury in the model of ischemia and reperfusion. Transplant Proc 2006; 38: 196-8. https://doi.org/10.1016/j.transproceed.2005.12.032
- Halliwell B, Gutteridge JC. Free radicals in biology and medicine. 4th ed. New York, Oxford University Press. 2007, p 22.
- Salvemini D, Riley DP, Lennon PJ, Wang ZQ, Currie MG, Macarthur H, et al. Protective effects of a superoxide dismutase mimetic and peroxynitrite decomposition catalysts in endotoxin-induced intestinal damage. Br J Pharmacol 1999; 127: 685-92. https://doi.org/10.1038/sj.bjp.0702604
- Xia ZF, Hollyoak M, Barrow RE, He F, Muller MJ, Herndon DN. Superoxide dismutase and leupeptin prevent delayed reperfusion injury in the rat small intestine during burn shock. J Burn Care Rehabil 1995; 16: 111-7. https://doi.org/10.1097/00004630-199503000-00004
- Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 2002; 282: C227-41. https://doi.org/10.1152/ajpcell.00112.2001
- Kim KW, Ha MJ, Jung KY, Kwak KH, Park SS, Lim DG. Reactive oxygen species and N-methyl-D-aspartate receptor- mediated central sensitization in hindlimb ischemia/ reperfusion injury-induced neuropathic pain rats. Korean J Anesthesiol 2009; 56: 186-94. https://doi.org/10.4097/kjae.2009.56.2.186
- Khalil Z, Khodr B. A role for free radicals and nitric oxide in delayed recovery in aged rats with chronic constriction nerve injury. Free Radic Biol Med 2001; 31: 430-9. https://doi.org/10.1016/S0891-5849(01)00597-4
- Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, et al. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 2004; 309: 869- 78. https://doi.org/10.1124/jpet.103.064154
- Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM, et al. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci 2009; 29: 159-68. https://doi.org/10.1523/JNEUROSCI.3792-08.2009
- Xu L, Mabuchi T, Katano T, Matsumura S, Okuda-Ashitaka E, Sakimura K, et al. Nitric oxide (NO) serves as a retrograde messenger to activate neuronal NO synthase in the spinal cord via NMDA receptors. Nitric Oxide 2007; 17: 18-24.
- Muscoli C, Mollace V, Wheatley J, Masini E, Ndengele M, Wang ZQ, et al. Superoxide-mediated nitration of spinal manganese superoxide dismutase: a novel pathway in Nmethyl- D-aspartate-mediated hyperalgesia. Pain 2004; 111: 96-103. https://doi.org/10.1016/j.pain.2004.06.004
- Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature 1983; 306: 686-8. https://doi.org/10.1038/306686a0
- Masu M, Nakajima Y, Moriyoshi K, Ishii T, Akazawa C, Nakanashi S. Molecular characterization of NMDA and metabotropic glutamate receptors. Ann N Y Acad Sci 1993; 707: 153-64. https://doi.org/10.1111/j.1749-6632.1993.tb38050.x
- Mori H, Mishina M. Structure and function of the NMDA receptor channel. Neuropharmacology 1995; 34: 1219-37. https://doi.org/10.1016/0028-3908(95)00109-J
- Guix FX, Uribesalgo I, Coma M, Munoz FJ. Physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005; 76: 126-52. https://doi.org/10.1016/j.pneurobio.2005.06.001
- Zhang XC, Zhang YQ, Zhao ZQ. Different roles of two nitric oxide activated pathways in spinal long-term potentiation of C-fiber-evoked field potentials. Neuropharmacology 2006; 50: 748-54. https://doi.org/10.1016/j.neuropharm.2005.11.021
- Duarte ID, dos Santos IR, Lorenzetti BB, Ferreira SH. Analgesia by direct antagonism of nociceptor sensitization involves the arginine-nitric oxide cGMP pathway. Eur J Pharmacol 1992; 217: 225-7. https://doi.org/10.1016/0014-2999(92)90881-4
- Ferreira SH, Lorenzetti BB, Faccioli LH. Blockade of hyperalgesia and neurogenic oedema by topical application of nitroglycerin. Eur J Pharmacol 1992; 217: 207-9. https://doi.org/10.1016/0014-2999(92)90871-Z
- Bulutcu F, Dogrul A, Guc MO. The involvement of nitric oxide in the analgesic effects of ketamine. Life Sci 2002; 71: 841-53. https://doi.org/10.1016/S0024-3205(02)01765-4
- Granados-Soto V, Rufino MO, Gomes Lopes LD, Ferreira SH. Evidence for the involvement of the nitric oxide-cGMP pathway in the antinociception of morphine in the formalin test. Eur J Pharmacol 1997; 340: 177-80. https://doi.org/10.1016/S0014-2999(97)01399-X
- Mixcoatl-Zecuatl T, Flores-Murrieta FJ, Granados-Soto V. The nitric oxide-cyclic GMP-protein kinase G-K+ channel pathway participates in the antiallodynic effect of spinal gabapentin. Eur J Pharmacol 2006; 531: 87-95. https://doi.org/10.1016/j.ejphar.2005.12.006
- Ortiz MI, Castro-Olguin J, Pena-Samaniego N, Castaneda- Hernández G. Probable activation of the opioid receptornitric oxide-cyclic GMP-K+ channels pathway by codeine. Pharmacol Biochem Behav 2005; 82: 695-703. https://doi.org/10.1016/j.pbb.2005.11.011
- Ortiz MI, Granados-Soto V, Castaneda-Hernández G. The NO-cGMP-K+ channel pathway participates in the antinociceptive effect of diclofenac, but not of indomethacin. Pharmacol Biochem Behav 2003; 76: 187-95. https://doi.org/10.1016/S0091-3057(03)00214-4
- de Moura RS, Rios AA, Santos EJ, Nascimento AB, de Castro Resende A, Neto ML, et al. Role of the NO-cGMP pathway in the systemic antinociceptive effect of clonidine in rats and mice. Pharmacol Biochem Behav 2004; 78: 247-53. https://doi.org/10.1016/j.pbb.2004.03.011
- Xanthos DN, Bennett GJ, Coderre TJ. Norepinephrineinduced nociception and vasoconstrictor hypersensitivity in rats with chronic post-ischemia pain. Pain 2008; 137: 640-51. https://doi.org/10.1016/j.pain.2007.10.031
- Kim YC. Complex regional pain syndrome. Korean J Pain 2004; 17(Suppl): 104-8. https://doi.org/10.3344/kjp.2004.17.S.S104
- Milligan ED, Twining C, Chacur M, Biedenkapp J, O'Connor K, Poole S, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 2003; 23: 1026-40.
- Twining CM, Sloane EM, Milligan ED, Chacur M, Martin D, Poole S, et al. Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats. Pain 2004; 110: 299-309. https://doi.org/10.1016/j.pain.2004.04.008
- Gordh T, Sharma HS. Chronic spinal nerve ligation induces microvascular permeability disturbances, astrocytic reaction, and structural changes in the rat spinal cord. Acta Neurochir Suppl 2006; 96: 335-40. https://doi.org/10.1007/3-211-30714-1_70
- Light AR, Perl ER. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol 1979; 186: 117-31. https://doi.org/10.1002/cne.901860202
- Koltzenburg M, Wall PD, McMahon SB. Does the right side know what the left is doing? Trends Neurosci 1999; 22: 122-7. https://doi.org/10.1016/S0166-2236(98)01302-2
- Donaldson LF. Unilateral arthritis: contralateral effects. Trends Neurosci 1999; 22: 495-6.
- Kwak KH, Jung KY, Choi JY, Ryu T, Yeo JS, Park SS, et al. Contralateral allodynia and central change in the chronic post-ischemic pain model rats. Korean J Anesthesiol 2009; 56: 419-24. https://doi.org/10.4097/kjae.2009.56.4.419
Cited by
- The effects of L-NAME on neuronal NOS and SOD1 expression in the DRG–spinal cord network of axotomised Thy 1.2 eGFP mice vol.7, pp.2-4, 2011, https://doi.org/10.1017/S1740925X12000051
- Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms vol.468, pp.2, 2016, https://doi.org/10.1007/s00424-015-1746-9
- The Therapeutic Effect of Vitamin C in an Animal Model of Complex Regional Pain Syndrome Produced by Prolonged Hindpaw Ischemia-Reperfusion in Rats vol.14, pp.1, 2010, https://doi.org/10.7150/ijms.17681
- Increased calcium-mediated cerebral processes after peripheral injury: possible role of the brain in complex regional pain syndrome vol.33, pp.2, 2010, https://doi.org/10.3344/kjp.2020.33.2.131
- Anti-Allodynic Effects of Polydeoxyribonucleotide in an Animal Model of Neuropathic Pain and Complex Regional Pain Syndrome vol.35, pp.26, 2020, https://doi.org/10.3346/jkms.2020.35.e225
- Nonhormonal Treatment for Endometriosis Focusing on Redox Imbalance vol.86, pp.1, 2010, https://doi.org/10.1159/000512628