Dependencies of Ultrasonic Velocities on the Wall Thickness in Polyvinyl Chloride Cortical Bone Mimics

  • Lee, Kang-Il (Department of Physics, Kangwon National University)
  • Received : 2010.09.09
  • Accepted : 2010.09.30
  • Published : 2010.09.30

Abstract

In the present study, tubular polyvinyl chloride (PVC) cortical bone mimics that simulate the cortical shell of long bones were used to validate the axial transmission technique for assessing the cortical thickness by measuring the ultrasonic velocities along the cortical shell of long bones. The ultrasonic velocities in the 9 PVC cortical bone mimics with wall thicknesses from 4.0 to 16.1 mm and inner diameters from 40 to 300 mm were measured as a function of the thickness by using a pair of custom-made transducers with a diameter of 12.7 mm and a center frequency of 200 kHz. In order to clarify the measured behavior, they were also compared with the predictions from a theory of guided waves in thin plates. This phantom study using the PVC cortical bone mimics provides useful insight into the dependencies of ultrasonic velocities on the cortical thickness in human long bones.

Keywords

References

  1. P. Laugier, "Instrumentation for in vivo ultrasonic characterization of bone strength," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 6, pp. 1179-1196, 2008. https://doi.org/10.1109/TUFFC.2008.782
  2. C. M. Langton, S. B. Palmer, and R. W. Porter, "The measurement of broadband ultrasonic attenuation in cancellous bone," Eng. Med., vol. 13, no. 2, pp. 89-91, 1984. https://doi.org/10.1243/EMED_JOUR_1984_013_022_02
  3. C. C. Gluer, "A new quality of bone ultrasound research," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 7, pp. 1524-1528, 2008. https://doi.org/10.1109/TUFFC.2008.828
  4. P. Laugier, "Quantitative ultrasound of bone: looking ahead," Joint Bone Spine, vol. 73, no. 2, pp. 125-128, 2006. https://doi.org/10.1016/j.jbspin.2005.10.012
  5. P. Ammann and R. Rizzoli, "Bone strength and its determinants," Osteoporosis Int., vol. 14, suppl. 3, pp. S13-S18, 2003.
  6. P. Moilanen, "Ultrasonic guided waves in bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 6, pp. 1277-1286, 2008. https://doi.org/10.1109/TUFFC.2008.790
  7. I. M. Siegel, G. T. Anast, and T. Fields, "The determination of fracture healing by measurement of sound velocity across the fracture site," Surg. Gynecol. Obstet., vol. 107, no. 3, pp. 327-332, 1958.
  8. A. J. Foldes, A. Rimon, D. D. Keinan, and M. M. Popovtzer, "Quantitative ultrasound of the tibia: a novel approach for assessment of bone status," Bone, vol. 17, no. 4, pp. 363-367, 1995. https://doi.org/10.1016/S8756-3282(95)00244-8
  9. K. Raum, I. Leguerney, F. Chandelier, E. Bossy, M. Talmant, A. Saied, F. Peyrin, and P. Laugier, "Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements," Ultrasound Med. Biol., vol. 31, no. 9, pp. 1225-1235, 2005. https://doi.org/10.1016/j.ultrasmedbio.2005.05.002
  10. P. H. F. Nicholson, P. Moilanen, T. Karkkainen, J. Timonen, and S. Cheng, "Guided ultrasonic waves in long bones: modelling, experiment and in vivo application," Physiol. Meas., vol. 23, no. 4, pp. 755-768, 2002. https://doi.org/10.1088/0967-3334/23/4/313
  11. K. I. Lee and S. W. Yoon, "Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia," J. Acoust. Soc. Am., vol. 115, no. 6, pp. 3210-3217, 2004. https://doi.org/10.1121/1.1707086
  12. S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, "Ultrasonic propagation in cortical bone mimics," Phys. Med. Biol., vol. 51, no. 18, pp. 4635-4647, 2006. https://doi.org/10.1088/0031-9155/51/18/012
  13. H. Lamb, "On waves in an elastic plate," Proc. R. Soc. Lond. A, vol. 93, no. 648, pp. 114-128, 1917. https://doi.org/10.1098/rspa.1917.0008
  14. P. Moilanen, V. Kilappa, P. H. F. Nicholson, J. Timonen, and S. Cheng, "Thickness sensitivity of ultrasound velocity in long bone phantoms," Ultrasound Med. Biol., vol. 30, no. 11, pp. 1517-1521, 2004. https://doi.org/10.1016/j.ultrasmedbio.2004.08.017
  15. G. W. Kaye and T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions, Longman, London, 1995.
  16. E. Camu, M. Talmant, G. Berger, and P. Laugier, "Analysis of the axial transmission technique for the assessment of skeletal status," J. Acoust. Soc. Am., vol. 108, no. 6, pp. 3058-3065, 2000. https://doi.org/10.1121/1.1290245
  17. P. Moilanen, P. H. F. Nicholson, V. Kilappa, S. Cheng, and J. Timonen, "Assessment of the cortical bone thickness using ultrasonic guided waves: modelling and in vitro study," Ultrasound Med. Biol., vol. 33, no. 2, pp. 254-262, 2007. https://doi.org/10.1016/j.ultrasmedbio.2006.07.038
  18. P. Moilanen, P. H. F. Nicholson, T. Karkkainen, Q. Wang, J. Timonen, and S. Cheng, "Assessment of the tibia using ultrasonic guided waves in pubertal girls," Osteoporosis Int., vol. 14, no. 12, pp. 1020-1027, 2003. https://doi.org/10.1007/s00198-003-1528-7
  19. D. Alleyne and P. Cawley, "A two-dimensional Fourier transform method for the measurement of propagating multimode signals," J. Acoust. Soc. Am., vol. 89, no. 3, pp. 1159-1168, 1991. https://doi.org/10.1121/1.400530
  20. W. H. Prosser, M. D. Seale, and B. T. Smith, "Time-frequency analysis of the dispersion of Lamb modes," J. Acoust. Soc. Am., vol. 105, no. 5, pp. 2669-2676, 1999. https://doi.org/10.1121/1.426883