Extracorporeal Shock Wave Therapy: Its Acoustical Aspects

  • Choi, Min-Joo (Department of Medicine, School of Medicine, Jeju National University) ;
  • Cho, Sung-Chan (the Interdisciplinary Graduate Program of Biomedical Engineering, Jeju National University) ;
  • Paeng, Dong-Guk (the Interdisciplinary Graduate Program of Biomedical Engineering, Jeju National University) ;
  • Lee, Kang-Il (Department of Physics, Gangwon National University)
  • Received : 2010.08.04
  • Accepted : 2010.08.11
  • Published : 2010.09.30

Abstract

Extracorporeal shock wave therapy (ESWT) is simply evolved from extracorporeal shock wave lithotripsy known as a revolutionary non-invasive technique for treating kidney stone diseases. Since ESWT was approved for treating plantar fasciitis by FDA in 2000, it has been rapidly accepted into various clinical practices. Its indication includes chronic tendinitis and pseudoarthrosis, and has been widened to various applications other than orthopeadics. Little has been reported on their acoustic properties, yet, even if a number of clinical ESWT systems are readily available. This article reviews the acoustical aspects of ESWT and discusses critical issues towards acoustic exposure optimization and shock wave dosimetry.

Keywords

References

  1. C. E. Bachmann, Gruber, G. W. Konermann, A. Arnold, G. M. Gruber, and F. Ueberle, "ESWT and Ultrasound Imaging of the Musculoskeletal System," Steinkopff Verlag Darmstadt, Germany, 2001.
  2. M. J. Choi, "Application of ultrasound in Medicine: Therapeutic ultrasound and ultrasound contrast agent," Journal of the Korean Society for Noise & Vibration Engineering, vol. 10, no. 4, pp. 743-759, 2000.
  3. W. Eisenmenger, "The mechanism of stone fragmentation in ESWL," Ultrasound in Medicine & Biology, vol. 27, pp. 683-93, 2001.
  4. C. G. Chaussy, W. Brendel, and E. Schmiedt, "ESWL: Past, Present, and future," J. Endourol., vol. 2, no. 2, pp. 97-105, 1988. https://doi.org/10.1089/end.1988.2.97
  5. H. Schulze, L. Hertle, J. Graff, P. J. Funke and T. Senge, "Combined treatment of branched calculi by percutaneous nephrolithotomy and extracorporeal shock wave lithotripsy," J. Urology, vol. 135, pp. 1138-1141, 1986 https://doi.org/10.1016/S0022-5347(17)46017-4
  6. G. O. Oosterhof, G. A. H. J. Smitd, J. E. de Ruyter, J. A. Schalken, and F. M. J. Debruyne, "In vivo effects of high energy shock waves on urological tumors: an evaluation of treatment modalities," J. Urology, vol. 144, pp. 785-789, 1990. https://doi.org/10.1016/S0022-5347(17)39592-7
  7. A. Spindler, A. Berman, E. Lucero and M. Braier, "High energy extracorporeal shock wave treatment for chronic calcific tendinits of the shoulder," J Rheumatol, vol. 25, pp. 1161-1163, 1998.
  8. G. Haupt, "Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendopathy and other orthopedic diseases," J. Urol., 158, 4-11, 1997. https://doi.org/10.1097/00005392-199707000-00003
  9. S. Heidersdorf, S. Lauber, H. J. Lauber, H. Hotzinger, J. Ludwig, U. Dreisilker, and R. Rodel, "Osteochondritis dissecans in Musculoskeletal Shockwave Therapy," Greenwich Medical Ltd., pp. 255-261, 2000.
  10. J. D. Rompe, P. Eysel, C. Hopf, O. Krishek, J. Vogel, R. Burger, J. Jage and J. Heine, "Extracorporeal shockwave therapy in orthopedics. Positive results in tennis elbow and tendinosis calcarea of the shoulder," Fortschr Med, vol. 115, pp. 29-33, 1997.
  11. J. A. Ogden, A. Toth-Kischkat, and R. Schultheiss, "Principles of shock wave therapy," Clin. Orthop., vol. 387, pp. 8-17, 2001. https://doi.org/10.1097/00003086-200106000-00003
  12. R. Alvarez, "Preliminary Results on the Safety and Efficacy of the Ossatron for Treatment of Plantar Fasciitis," Foot Ankle Int., vol. 23, pp. 197-203, 2002. https://doi.org/10.1177/107110070202300302
  13. C. J. Wang, H. S. Chen, C. E. Chen and K. D. Yang, "Treatment of Nonunions of Long Bone Fractures With Shock Waves," Clinical Orthopaedics & Related Research, vol. 387, pp. 95-101, 2001. https://doi.org/10.1097/00003086-200106000-00013
  14. V. Valchanow and P. Michailow, "High energy shock waves in the treatment of delayed and non-union fractures," Int. Orthopaed, vol. 15, pp. 181-185, 1991.
  15. T. A. Davis, A. Stojadinovic, K. Amare, M. Anam, S. Naik, G. E. Peoples, D. Tadaki, and E. A. Elster, "Extracorporeal shock wave therapy suppresses the acute early proinflammatory immune response to a severe cutaneous burn injury," Int Wound J, vol. 6, pp. 11-21, 2009. https://doi.org/10.1111/j.1742-481X.2008.00540.x
  16. Y. R. Kuo, W. S. Wu, Y. L. Hsieh, F. S. Wang, C. T. Wang, Y. C. Chiang and C. J. Wang, "Extracorporeal shock wave enhanced extended skin flap tissue survival via increase of topical blood perfusion and associated with suppression of tissue proinflammation," J Surg Res, vol. 143, pp. 385-392, 2007. https://doi.org/10.1016/j.jss.2006.12.552
  17. Y. Fukumoto, A. Ito, T. Uwatoku, T. Matoba, T. Kishi, H. Tanaka, A. Takeshita, et al, "Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease," Therapy and Prevention. Coron. Artery Dis., vol. 17, no. 1, pp. 63-70, 2006. https://doi.org/10.1097/00019501-200602000-00011
  18. M. Maier, H. R. Durr, S. Kohler, D. Staupendahl, M. Pfahler, and H. J. Refior, "Analgesic effect of low energy extracorporeal shock waves in tendinosis calcarea, epicondylitis humeri radialis and plantar fasciitis," Z Orthop Ihre Grenzgeb, vol. 138, pp. 34-38, 2000. https://doi.org/10.1055/s-2000-10110
  19. C. J. Wang, J. Y. Ko and H. S. Chen, "Treatment of calcifying tendinitis of the shoulder with shock wave therapy," Clin. Orthop., vol. 387, pp. 83-89, 2001. https://doi.org/10.1097/00003086-200106000-00011
  20. A. Gutersohn, G. Caspari, and R. Erbel, "Autoangiogenesis Induced by Cardiac Shock Wave Therapy (CSWT) Increases Perfusion and Exercise Tolerance in Endstage CAD Patients with Refractory Angina," Circ. J., vol. 69, no. s1, pp. 379, 2005.
  21. P. V. Chitnis, "Characterization and comparative analysis of extracorporeal shock wave devices," M.Sc. Thesis, Boston University, Boston MA, USA, 2000.
  22. F. E. Prieto, A. M. Loske, and F. L. Yarger, "An underwater shock wave research device," Review of Scientific Instruments, vol. 62, pp. 1849-1854, 1991. https://doi.org/10.1063/1.1142527
  23. S. C. Cho, "Optimization of a cylindrical electromagnetic shock wave transducer," MSc Thesis, Jeju National University, Jeju, Republic of Korea, 2008.
  24. D. E. Johnson, J. R. Johnson and J. L. Hilburn, "Electric Circuit Analysis, 2nd ed., Prentice-Hall, Inc., Englewodd Cliffs, 1992.
  25. M. J. Choi, "Physical aspects of high amplitude pulsed ultrasound used in lithotripsy," PhD Thesis. University of Bath, England, 1992.
  26. R. O. Cleveland, M. R. Bailey, N. Fineberg, B. Hartenbaum, J. A. McAteer, and B. Sturtevant, "Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3," Review of Scientific Instruments, vol. 71, pp. 2514-2524, 2000. https://doi.org/10.1063/1.1150643
  27. H. P. T. Hunter, B. Finlayson, R. J. Hirko, W. C. Voreck, R. Walker, S. Walck, and M. E. Naser, "Measurement of shock wave pressures used for lithotripsy," J. Urology, vol. 136, pp. 733-738, 1986. https://doi.org/10.1016/S0022-5347(17)45038-5
  28. C. T. A. Johnk, "Engineering Electromagnetic Fields and Waves," 2nd ed. John Wiley & Sons, New York, USA, 1988.
  29. W. Eisenmenger, "Experimental determination of shock front thi ckness from the acoustic spectrum of shock wave with shock pressure between 10 and 100 atm generated with electromagnetic means in liquids," Acustica, vol. 14, pp. 184, 1964.
  30. S. C. Cho, G. S. Kang, S. H. Sang, K. I. Lee, D. G. Paeng, and M. J. Choi, "Properties of the acoustic fields of a domestic electromagnetic extracorporeal shock wave therapy system," Proceedings of the Acoustical Society of Korea. vol. 26, no. 2s, pp. 237-238, 2007.
  31. W. Folberth, G. Köhler, A. Rohwedder and E. Matura, "Pressure distribution and energy flow in the focal region of two different electromagnetic shock wave sources," J. Stone Disease, vol. 4, pp. 1-5, 1992.
  32. H. Reichenberger and G. Naser, "Electromagnetic acoustic source for the extracorporeal generation of shock waves in lithotripsy," Siemens Forschungs Und Entwicklungs Berichte, vol.15, pp. 187-194, 1986.
  33. H. Reichenberger, "Lithotripter system," Proc. of the IEEE, vol. 76, no. 9, pp. 1236-1246, 1988. https://doi.org/10.1109/5.9670
  34. S. H. Lee, J. H. Lee, H. J. Lee, and M. J. Choi, "Electromagnetic and dynamic properties of an electromagnetic type shock wave source: numerical simulation," Proc. of the Acoustical Society of Korea, vol. 20, no. 1s, pp. 917-920, 2001.
  35. A. J. Coleman, M. J. Choi, and J. E. Saunders, "Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter," Ultrasound in Medicine & Biology, vol. 17, no. 3, pp. 245-255, 1991. https://doi.org/10.1016/0301-5629(91)90046-Y
  36. A. J. Coleman, and J. E. Saunders, "A survey of the acoustic output of commercial extracorporeal shock wave lithotripters," Ultrasound in Medicine & Biology, vol. 15, pp. 213-220, 1989. https://doi.org/10.1016/0301-5629(89)90066-5
  37. M. J. Choi, S. C. Cho, D. G. Paeng, K. I. Lee, and A. J. Coleman, "Acoustic characterization of a domestic commercial shock wave therapy system for the treatment of chronic tendonitis using a broadband optical hydrophone," The 7th International Symposium of Therapeutic Ultrasound, Seoul, 12-15 June 2007.
  38. M. J. Choi, S. C. Cho, G. S. Kang, D. G. Paeng, K. I. Lee, M. Hodnett, B. Zeqiri, and A. J. Coleman, "Quantification of acoustic cavitation produced by a clinical extracorporeal shock wave therapy system," Modern Physics Letters B, vol. 22, no. 11, pp. 809-814, 2008. https://doi.org/10.1142/S0217984908015425
  39. A. M. Loske, "The role of energy density and acoustic cavitation in shock wave lithotripsy," Ultrasonics, vol. 50, pp. 300-305, 2010. https://doi.org/10.1016/j.ultras.2009.09.012
  40. M. J. Choi, S. C. Cho, and A. J. Coleman A J, "Characterization of a commercial shockwave therapy system developed for the treatment of chronic tendonitis," UKTUIG Meeting, IRC, London, 28 Feb. 2006.
  41. A. J. Coleman, M. J. Choi, and J. E. Saunders, "Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy," Ultrasound in Medicine & Biology, vol. 22, no. 8, pp. 1079-1087, 1996. https://doi.org/10.1016/S0301-5629(96)00118-4
  42. M. Delius, "Medical applications and bioeffects of extracorporeal shock waves," Shock waves, vol. 4, pp. 55-58, 1994. https://doi.org/10.1007/BF01418569
  43. O. A. Sapozhnikov, A. D. Maxwell, B. MacConaghy and M. R. Bailey, "A mechanistic analysis of stone fracture in lithotripsy," Journal of the Acoustical Society of America, vol. 121, pp. 1190-202, 2007. https://doi.org/10.1121/1.2404894
  44. B. R. Matlaga, J. A. McAteer, B. A. Connors, R. K. Handa, A. P. Evan, J. C. Williams, J. E. Lingeman, and L. R. Willis, "Potential for cavitation-mediated tissue damage in shock wave lithotripsy," The Journal of Endourology, vol. 22, pp. 121-26, 2008. https://doi.org/10.1089/end.2007.9852
  45. M. Loew, W. Daecke, D. Kusnierczak, M. Rahmanzadeh, and V. Ewerbeck, "Shock-wave therapy is effective for chronic calcifying tendinitis of the shoulder," J Bone Joint Surg Br, vol. 81, pp. 863-867, 1999. https://doi.org/10.1302/0301-620X.81B5.9374
  46. H. G. Neuland, A. Lang, and P. Kraemer, "Heat shock proteins, extracorporeal shockwaves and wound healing process," Presentation no. 40; 10th Int. Congress of the ISMST, 6-9 June 6th 2007, Toronto, Canada, 2007.
  47. Y. Ito, K. Ito, T. Shiroto, R. Tsuburaya , G. J. Yi, M. Takeda, Y. Fukumoto, S. Yasuda, and H. Shimokawa, "Cardiac shock wave therapy ameliorates left ventricular remodeling after myocardial ischemia-reperfusion injury in pigs in vivo," Coron. Artery Dis., vol. 21, pp. 304-311, 2010. https://doi.org/10.1097/MCA.0b013e32833aec62
  48. A. M. Loske, J. Gutierrez, E. D. Grazia and F. Ferrnandez, "Out-of-focus shockwaves: a new tissue-protecting therapy?," Archivo Italiano di Urologia e Andrologia, vol. 76, pp. 159-162, 2004.