DOI QR코드

DOI QR Code

EDLC의 전기화학적 성능에 대한 메조기공 구조의 효과

Effect of pore structure on electrochemical performance of EDLC

  • 이명숙 (충북대학교 화학공학과, 충북대학교 산업과학기술연구소) ;
  • 신윤성 (충북대학교 화학공학과, 충북대학교 산업과학기술연구소) ;
  • 이종대 (충북대학교 화학공학과, 충북대학교 산업과학기술연구소)
  • Lee, Myung-Suk (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.) ;
  • Shin, Yun-Sung (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.) ;
  • Lee, Jong-Dae (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.)
  • 투고 : 2010.06.29
  • 심사 : 2010.09.10
  • 발행 : 2010.09.30

초록

The electrochemical properties of electric double layer capacitor(EDLC) was studied by controlling pore size distribution and specific surface area of the activated carbon fiber(ACF). The mesoporous ACF, which was prepared by the iron exchange method, showed the tendency of increasing average pore size and decreasing total surface area. The mesoporous ACF (surface area = 2225 $m^2$/g, pore size=1.93 nm) showed increased mesopore(pore size=1~3nm) volume from 0.055 cc/g to 0.408 cc/g compared to its raw ACF. The charging capacity of the EDLC which uses the prepared mesoporous ACF also increased from 0.39 F/$cm^2$ to 0.55 F/$cm^2$. From these results, it can be known that the electrochemical properties of EDLC are mainly dependent on the specific surface area, but above the surface area 2200 $m^2$/g, it is the mesopore volume that affects the performance of the capacitor considerably. Because the increased mesopore volume results in a decreased ion mobility resistance, the charge capacitance is enhanced.

키워드

참고문헌

  1. B. E. Conway, Transition from 'Supercapacitor' to 'battery' behavior in electrochemical energy storage, J. Electrochem. Soc., 138(6), 1539 (1991). https://doi.org/10.1149/1.2085829
  2. E. Frackowiak, and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  3. A. Soffer, G. Salitra, L. Eliad, Y. Cohen, and D. Aurbach, Carbon Electrodes for Double-Layer Capacitors I. Relations Between Ion and Pore Dimensions, J. Electrochem. Soc., 147, 2486 (2000). https://doi.org/10.1149/1.1393557
  4. S. R. S. Prabaharan, R. Vimala, and Z. Zainal, Nanostructured mesoporous carbon as electrodes for supercapacitors, J. Power sources, 161, 730 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.074
  5. S. Mitani, S. I. Lee, K. saito, Y. Korai, and I. Mochida, Contrast structure and EDLC performances of activated spherical carbons with medium and large surface areas, Electrochimica Acta, 51, 5487(2006). https://doi.org/10.1016/j.electacta.2006.02.040
  6. B. E. Conway, "Electrochemical Supercapacitors", Kluwer Academic and Plenum Publishers, NewYork (1990).
  7. G. Gryglewicz, J. Machnilkowski, E. Lprenc-Grabowska, G. Lota, and E. Frackowiak, Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochimica Acta, 50, 1197 (2005). https://doi.org/10.1016/j.electacta.2004.07.045
  8. O. Barbieri, M. Hahn, A. Herzog, and R. Kotz, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 43, 1303 (2005). https://doi.org/10.1016/j.carbon.2005.01.001
  9. A. Alonso, V. Ruiz, C. Blanco, R. Santamaria, M. Granda, R. Menendez, and S. G. E. de Jager, Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors, Carbon, 44, 441 (2006). https://doi.org/10.1016/j.carbon.2005.09.008
  10. T. Kyotani, Control of pore structure in carbon, Carbon, 38, 269 (2000). https://doi.org/10.1016/S0008-6223(99)00142-6
  11. S. Y. Moon, D. Y. Han, B. H. Lee and Y. S. Lim, Characterization of activation of various carbon fibers via chemical activation with KOH, J. Kor. Oil Chem. Soc., 22, 43 (2005).
  12. J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, and A. Oya, Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon, 35, 1031 (1997). https://doi.org/10.1016/S0008-6223(97)89878-8
  13. C. Y. Kang, M. G. Kang, and J. D. Lee, Preparation of mesoporous carbon using ion exchange, J. Kor. Oil Chem. Soc., 26, 328 (2009).
  14. E. Lorenc-Grabowska, G. Gryglewicz, and S. Gryglewicz, Development of mesoporosity in activated carbons via coal modification using Ca- and Fe-exchange, Micropor. Mesopor. Mater., 76, 193 (2004). https://doi.org/10.1016/j.micromeso.2004.08.012
  15. C. Lin, and J. A. Ritter, Effect of synthesis pH on the structure of carbon xerogels, Carbon, 35, 1271 (1997). https://doi.org/10.1016/S0008-6223(97)00069-9
  16. L. Li, H. Song, and X. Chen, Ordered mesoporous carbons from the carbonization of sulfuric-acid-treated silica / triblock copolymer / sucrose composites, Micropor. Mesopor. Mater., 94, 9 (2006). https://doi.org/10.1016/j.micromeso.2006.03.021
  17. Z. Chuan-xiang, D. Yu-ling, X. Bao-lin1, Z. Liang, Q. Wen-ming, and L. Li-cheng, Influence of nitrogen hetero-substitution on the electrochemical performance of coal-based activated carbons measured in non-aqueous electrolyte, Journal of China University of Mining & Technology, 19, 295 (2009).
  18. M. Seredych, D. Hulicova-Jurcakova, G. Q. Lu, and T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, 1475 (2008). https://doi.org/10.1016/j.carbon.2008.06.027
  19. K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Appl. Chem., 54(11) 2201 (1982). https://doi.org/10.1351/pac198254112201
  20. H. Y. Liu, K. P. Wang, and H. Teng, A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation, Carbon, 43, 559 (2005). https://doi.org/10.1016/j.carbon.2004.10.020
  21. K. P. Wang, and H, Teng, The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 44, 3218 (2006). https://doi.org/10.1016/j.carbon.2006.06.031