DOI QR코드

DOI QR Code

(예비)교사를 위한 완비성의 학습과 지도에 관한 소고

  • Received : 20100800
  • Accepted : 20100800
  • Published : 2010.08.31

Abstract

In this paper, the author focuses on the teaching-level and learning-level of the completeness axiom and its applications on [0,1] and $\mathbb{R}$, $\mathbb{R}{\times}\mathbb{R}$, $\mathbb{R}{\times}\mathbb{R}{\times}\mathbb{R}$ by (expected) teachers in the school mathematics, which is usually introduced in the class of real analysis of university mathematics. Firstly the author considers the properties of the completeness axiom and its 19 equivalent theorems, next he deals with its importances in the school mathematics and finally he suggests the teaching and learning of the concepts on the completeness axiom and its applications on [0,1] and $\mathbb{R}$, $\mathbb{R}{\times}\mathbb{R}$, $\mathbb{R}{\times}\mathbb{R}{\times}\mathbb{R}$ by (expected) teachers in the school mathematics.

Keywords

References

  1. 박영훈, 여태경, 김선화, 심성아, 이태림, 김수미 (2009). 중학교 수학 I, p. 145-150, (주) 천재문화.
  2. 박종율, 유종광, 이창주, 홍분남, 김덕진, 박우량 (2009). 중학교 수학 1 교과서, (주) 도서출판 디딤돌.
  3. 우정호, 박교식, 박경미, 이경화, 김남희, 임재훈, 신보미, 최인선, (2010). 고등학교 수학 I, 두산동아(주)
  4. 이병수 (1996). 수학의 이해, 경성대학교 출판부.
  5. 이병수 (2008). 기초 실해석학, 교우사.
  6. 이준열, 최부림, 김동재, 서정인, 전용주, 김홍섭, 장희숙, 조석연, 오승아, 송정 (2010). (주) 천재교육.
  7. 이준열, 최부림, 김동재, 송영준, 윤상호, 황선미 (2010). (주) 천재교육.
  8. 정동명, 조승제 (2004). 실해석학 개론, 경문사.
  9. 최용준, 김서령, 이정례, 선우하식, 이진호, 조동석, 이한주, 김덕환, 김민정, 박 효정 (2010). 고등학교 미분적분과 통계기본 교과서, (주) 천재교육.
  10. 최용준, 한대희, 박진교, 김강은, 신태양, 배맹주 (2010). 중학교 수학 2 교과서, (주) 천재문화.
  11. D'Angelo J. P. & West Douglas B. (2000). Mathematical Thinking, Problem-Solving and Proofs, Prentice Hall, NJ.
  12. Ball, D. L. (1991). Research on teaching mathematics ; Making subject-matter knowledge part of equation. In J. Brophy (Ed.), Advances in Research on Teaching (Vol. 2, pp.11-48) : JAI Press.
  13. Bartle, R. G. & Sherbert, D. R. (2000). Introduction to Real Analysis, 3ed, John Wiley & Sons, Inc..
  14. Cooney, T. J. & Wiegel, H. G. (2003). Examining the mathematics in mathematics teacher education. In A. J. Bishop, et al. (eds.), Second international handbook of mathematics education (pp. 795-828). Dordrecht: Kluwer.
  15. Hennings Cindy S. (2007). The mathematical preparation of secondary teachers: A Call for Research, Journal of Mathematical Sciences & Mathematical Education 2(2).
  16. Prediger Susanne (2010). How to develop mathematics-for- teaching and for understanding: the case of meanings of the equal sign, J. Math. Teacher Educ. (2010) 13:73-93. https://doi.org/10.1007/s10857-009-9119-y
  17. Shulman. L. S. (1986). Those who understand: Knowledge growth in teaching, Educational Researcher, 15, 4-14.
  18. Simon Martin A., (1993). Prospective elementary teachers' knowledge of division, J. for Research in Mathematics Education, Vol. 24, No. 3, 233-254. https://doi.org/10.2307/749346
  19. Trench, William F. (2003). Introduction To Real Analysis, Pearson Education.
  20. Usiskin, Z. (2001). Teachers' mathematics: A collection of content deserving to be a field. Paper presented at the National Summit on the Mathematical Education of Teachers, Washing, DC.
  21. Wilhelmi Miguel R., Godino Juan D. & Lacasta Eduardo, (2007). Didactic effectiveness of mathematical definitions, the case of the absolute value, int'l Electronic J. of Mathematics education Vol. 2, No2., pp.72-90.