참고문헌
- I. K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004), 315-332. https://doi.org/10.1016/j.cam.2004.01.029
- I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), 374-397. https://doi.org/10.1016/j.jmaa.2004.04.008
- I. K. Argyros, Convergence and applications of Newton-type iterations, Springer-Verlag Pub.,New York, 2008.
- I. K. Argyros, On a class of Newton-like methods for solving nonlinear equations, J. Comput.Appl. Math. 228 (2009), 115-122. https://doi.org/10.1016/j.cam.2008.08.042
- J. E. Dennis, Toward a unied convergence theory for Newton-like methods, in Nonlin-ear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York, (1971), 425-472.
- L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
- J. M. McNamee, Numerical methods for roots of polynomials, part I, 14, Elsevier, 2007.
- F. A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Mathe-matica 5 (1985), 71-84.
- T. Yamamoto, A convergence theorem for Newton-like methods in Banach spaces, Nu-mer. Math. 51 (1987), 545-557. https://doi.org/10.1007/BF01400355