Training-Based Noise Reduction Method Considering Noise Correlation for Visual Quality Improvement of Recorded Analog Video

녹화된 아날로그 영상의 화질 개선을 위한 잡음 연관성을 고려한 학습기반 잡음개선 기법

  • 김성득 (안동대학교 정보전자공학교육과) ;
  • 임경원 ((주) LG전자 DTV연구소)
  • Received : 2010.06.26
  • Published : 2010.11.25

Abstract

In order to remove the noise contained in recorded analog video, it is important to recognize the real characteristics and strength of the noise. This paper presents an efficient training-based noise reduction method for recorded analog video after analyzing the noise characteristics of analog video captured in a real broadcasting system. First we show that there is non-negligible noise correlation in recorded analog video and describe the limitations of the traditional noise estimation and reduction methods based on additive white Gaussian noise (AWGN) model. In addition, we show that auto-regressive (AR) model considering noise correlation can be successfully utilized to estimate and synthesize the noise contained in the recorded analog video, and the estimated AR parameters are utilized in the training-based noise reduction scheme to reduce the video noise. Experiment results show that the proposed method can be efficiently applied for noise reduction of recorded analog video with non-negligible noise correlation.

녹화된 아날로그 영상에 내재하는 잡음을 효과적으로 제거하기 위해서는 잡음의 실제 특성과 정도를 정확히 파악하는 것이 매우 중요하다. 본 논문에서는 실제 방송되는 아날로그 영상을 녹화하여 잡음의 특성을 분석한 후, 녹화된 아날로그 영상을 위한 효과적인 학습기반 잡음개선 방법을 제안한다. 먼저 녹화된 아날로그 영상의 잡음을 분석하여 무시할 수 없는 잡음의 연관성이 존재하는 것을 보임으로써, 전통적인 부가 백색 가우시안 잡음 (AWGN) 모델에 기반을 둔 잡음의 추정과 잡음 제거 방법이 가지는 한계를 설명한다. 또한 잡음의 연관성을 고려한 자기회귀 모델을 이용해서 녹화된 아날로그 영상에 내재하는 잡음을 추정하고 합성할 수 있음을 보이며, 추정된 자기회귀 모델을 이용해 학습기반 잡음제거 기법에 적용함으로써 비디오 잡음을 제거한다. 실험결과는 제안된 방법이 무시할 수 없을 정도로 잡음 연관성을 가진 실제 녹화된 아날로그 영상의 잡음 제거에 효과적으로 활용될 수 있음을 보여준다.

Keywords

References

  1. G. de Haan, T. G. Kwaaitaal-Spassova, and O. A. Ojo, "Automatic 2-D and 3-D noise filtering for television receivers," Proc. Int. Workshop HDTV, Oct. 1994.
  2. G. de Haan, T. G. Kwaaitaal-Spassova, M. Larragy, and O. A. Ojo, "Memory integrated noise reduction IC for television," IEEE Trans. Consumer Electronics, vol. 42. no. 2, pp. 175-181, May 1996. https://doi.org/10.1109/30.494418
  3. Y. Huang and L. Hui, "An adaptive spatial filter for additive Gaussian and impulse noise reduction in video signals," Proc. Int. Conf. Information, Commun. & Signal Processing and Pacific-Rim Conf. Multimedia, pp. 523-526, Dec. 2003.
  4. A. Amer and E. Dubois, "Fast and reliable structure-oriented video noise estimation," IEEE Trans. Circuits and Systems for Video Technol., vol. 15, no. 1, pp. 113-118, Jan. 2005. https://doi.org/10.1109/TCSVT.2004.837017
  5. D.-H. Shin, R.-H. Park, S. Yang, and J.-H. Jung, "Block-based noise estimation using adaptive Gaussian filtering," IEEE Trans. Consumer Electronics, vol. 51, no. 1, pp. 218-226, Feb. 2005. https://doi.org/10.1109/TCE.2005.1405723
  6. M. Ghazal, A. Amer, and A. Ghrayeb, "Structure-oriented spatio-temporal video noise estimation," Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, vol. 2, pp. 845-848, May 2006.
  7. K. Rank, M. Lendl, and R. Unbehauen, "Estimation of image noise variance," IEE Proceedings Vision, Image and Signal Processing, vol. 146, no. 2, pp. 80-84, Aug. 1999. https://doi.org/10.1049/ip-vis:19990238
  8. P. Q. Tuan, "Histogram-based noise estimation," Appendix A of his Ph.D. Thesis, Delft University of Technology, 2006.
  9. J. Sijbers, D. Poot, A. J. Dekker, and W. Pintjens, "Automatic estimation of the noise variance from the histogram of a magnetic resonance image," Phys. Med. Biol., vol. 52, pp. 1335-1348, 2007. https://doi.org/10.1088/0031-9155/52/5/009
  10. C. W. Therrien, Discrete random signals and statistical signal processing, Prentice-Hall, pp. 535-541, 1992.
  11. B. T. Oh, C.-C. J. Kuo, S. Sun, and S. Lei, "Film grain noise modeling in advanced video coding," Proc. Visual Commun. and Image Processing, 2007.
  12. L. Shao, H. Zhang, and G. de Haan, "An overview and performance evaluation of classification-based least squares trained filters," IEEE Trans. Image Processing, vol. 17, no. 10, pp. 1772-1782, Oct. 2008. https://doi.org/10.1109/TIP.2008.2002162
  13. H. Hu and G. de Haan, "Trained bilateral filters and applications to coding artifacts reduction," Proc. IEEE Int. Conf. Image Processing, pp. I.325-328, Sept. 2007.
  14. J. S. Lim, Two-dimensional signal and image processing, Prentice-Hall, 1990.