Abstract
In order to remove the noise contained in recorded analog video, it is important to recognize the real characteristics and strength of the noise. This paper presents an efficient training-based noise reduction method for recorded analog video after analyzing the noise characteristics of analog video captured in a real broadcasting system. First we show that there is non-negligible noise correlation in recorded analog video and describe the limitations of the traditional noise estimation and reduction methods based on additive white Gaussian noise (AWGN) model. In addition, we show that auto-regressive (AR) model considering noise correlation can be successfully utilized to estimate and synthesize the noise contained in the recorded analog video, and the estimated AR parameters are utilized in the training-based noise reduction scheme to reduce the video noise. Experiment results show that the proposed method can be efficiently applied for noise reduction of recorded analog video with non-negligible noise correlation.
녹화된 아날로그 영상에 내재하는 잡음을 효과적으로 제거하기 위해서는 잡음의 실제 특성과 정도를 정확히 파악하는 것이 매우 중요하다. 본 논문에서는 실제 방송되는 아날로그 영상을 녹화하여 잡음의 특성을 분석한 후, 녹화된 아날로그 영상을 위한 효과적인 학습기반 잡음개선 방법을 제안한다. 먼저 녹화된 아날로그 영상의 잡음을 분석하여 무시할 수 없는 잡음의 연관성이 존재하는 것을 보임으로써, 전통적인 부가 백색 가우시안 잡음 (AWGN) 모델에 기반을 둔 잡음의 추정과 잡음 제거 방법이 가지는 한계를 설명한다. 또한 잡음의 연관성을 고려한 자기회귀 모델을 이용해서 녹화된 아날로그 영상에 내재하는 잡음을 추정하고 합성할 수 있음을 보이며, 추정된 자기회귀 모델을 이용해 학습기반 잡음제거 기법에 적용함으로써 비디오 잡음을 제거한다. 실험결과는 제안된 방법이 무시할 수 없을 정도로 잡음 연관성을 가진 실제 녹화된 아날로그 영상의 잡음 제거에 효과적으로 활용될 수 있음을 보여준다.