The Mixed Finite Element Analysis for Nearly Incompressible and Impermeable Porous Media Using Parallel Algorithm

병렬알고리즘 이용한 비압축, 비투과성 포화 다공질매체의 혼합유한요소해석

  • 탁문호 (한양대학교 건설환경공학과) ;
  • 강윤식 (한양대학교 건설환경공학과) ;
  • 박대효 (한양대학교 건설환경공학과)
  • Received : 2010.06.07
  • Accepted : 2010.08.10
  • Published : 2010.08.31

Abstract

In this paper, the parallel algorithm using MPI(Message-Passing Interface) library is introduced in order to improve numerical efficiency for the staggered method for nearly incompressible and impermeable porous media which was introduced by Park and Tak(2010). The porous media theory and the staggered method are also briefly introduced in this paper. Moreover, we account for MPI library for blocking, non-blocking, and collective communication, and propose combined the staggered method with the blocking and nonblocking MPI library. And then, we present how to allocate CPUs on the staggered method and the MPI library, which is related with the numerical efficiency in order to solve unknown variables on nearly incompressible and impermeable porous media. Finally, the results comparing serial solution with parallel solution are verified by 2 dimensional saturated porous model according to the number of FEM meshes.

본 논문에서는 Park and Tak(2010)이 제안한 다공질매체 스태거드 방법의 효율성을 제고하기 위해 MPI(Message- Passing Interface) 라이브러리를 통한 병렬해석이 소개된다. 이를 위해 비압축, 비투과성 포화 다공질매체와 FEM을 통한 스태거드 방법이 간략히 소개된다. 그리고 병렬해석을 위한 MPI 라이브러리를 소개하고 스태거드 방법에 블록킹, 논블록킹 MPI 라이브러리를 접목시킨 병렬해석 알고리즘을 제안한다. 여기서는 변위와 간극수압 계산에서의 CPU 할당방법과 MPI 통신 규약을 통한 효율적인 프로그래밍 방법을 제시하고, 수치효율성을 검증하기 위한 2차원 모델의 순차해석과 병렬 해석 결과 값들을 요소개수에 따라 계산시간이 비교 검증된다.

Keywords

References

  1. 문지중, 김승조, 이민형 (2009) 세라믹/금속판재의 고속충돌 파괴 유한요소 병렬해석 기법, 한국전산구조공학회 논문집, 22(06), pp.527-532.
  2. Babuska, I. (1973) The Finite Element Method with Lagrange Multipliers, Numerische Mathematik, 20(3), pp.179-192. https://doi.org/10.1007/BF01436561
  3. Belytschko, T., Yen, H.J., Mullen, R. (1979) Mixed Methods for Time Integration, Computer Methods in Applied Mechanics and Engineering, 17(18), pp.259-275.
  4. Biot, M. (1941) General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12(1), pp.155-164.
  5. Borja, R.I. (1986) Finite Element Formulation for Transient Pore Pressure Dissipation: A Variational Approach, International Journal of Solid and Structures, 22(11), pp.1201-1211. https://doi.org/10.1016/0020-7683(86)90076-4
  6. Bowen, R.M. (1980) Incompressible Porous Media Models by use of the Theory of Mixtures, International Journal of Engineering Science, 18(9), pp.1129-1148. https://doi.org/10.1016/0020-7225(80)90114-7
  7. Goodman, M., Cowin, S. (1972) A Continuum Theory for Granular Materials, Archive for Rational Mechanics and Analysis, 44(4), pp.249-266.
  8. Gropp, W., Lusk, E., Thakur, R. (1999) Using MPI-2: Advanced Features of the Message-Passing Interface, MIT Press, p.382.
  9. Gropp, William., Lusk, Ewing., Skjellum, Anthony (1999) Using MPI - 2nd Edition: Portable Parallel Programing with the Message-Passing Interface, MIT Press, p.371.
  10. Hassanizadeh, S., Gray, W. (1979a) General Conservation Equations for Multi-Phase Systems: 1. Averaging Procedure, Advances in Water Resources, 2, pp.131-144. https://doi.org/10.1016/0309-1708(79)90025-3
  11. Hassanizadeh, S., Gray, W. (1979b) General Conservation Equations for Multi-Phase Systems: 2. Mass, Momenta, Energy and Entropy Equations, Advances in Water Resources, 2, pp.191-203. https://doi.org/10.1016/0309-1708(79)90035-6
  12. Lewis, R.W., Schrefler, B.A. (2000) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, John Wiley & Sons.
  13. Morland, L.W. (1972) A Simple Constitutive Theory for a Fluid-Saturated Porous Solid, Journal of Geophysical Research, 77(10), pp.890-900.
  14. Park, K.C. (1983) Stabilization of Partitioned Solution Procedure for Pore Fluid-Soil Interaction Analysis, International Journal for Numerical Methods in Engineering, 19(11), pp.1669-1673. https://doi.org/10.1002/nme.1620191106
  15. Park, T., Tak, M. (2010) A New Coupled Analysis for Nearly Incompressible and Impermeable Saturated Porous Media on Mixed Finite Element Method: I.Proposed Method, KSCE, 14(1), pp.7-16. https://doi.org/10.1007/s12205-010-0007-x
  16. Park, T., Tak, M. (2010) A New Coupled Analysis for Nearly Incompressible and Impermiable Saturated Porous Media on Mixed Finite Element Method: I. Proposed Method, KSCE, 14(1), pp.7-16. https://doi.org/10.1007/s12205-010-0007-x
  17. Park, T., Tak, M., Kim, H. (2005a) Analysis of Saturated Porous Media Using Arbitrary Lagrangian Eulerian Method: I. Theoretical Formulation. KSCE Journal of Civil Engineering, KSCE, 9(3), pp.233-239.
  18. Park, T., Tak, M., Kim, H. (2005b) Analysis of Saturated Porous Media Using Arbitrary Lagrangian Eulerian Method: II. Finite Element Formulation. KSCE Journal of Civil Engineering, KSCE, 9(3), pp.241-246.
  19. Park, T., Tak, M., Kim, H. (2005c) Analysis of Saturated Porous Media Using Arbitrary Lagrangian Eulerian Method: III. Numerical Examples. KSCE Journal of Civil Engineering, KSCE, 9(3), pp.247-254.
  20. Tak, M., Park, T. (2010) A New Coupled Analysis for Nearly Incompressible and Impermeable Saturated Porous Media on Mixed Finite Element Method: II. Verifications, KSCE, 14(1), pp.17-24. https://doi.org/10.1007/s12205-010-0017-8
  21. Voyiadjis, G.Z., Abu-Farsakh, M.Y. (1997) Coupled Theory of Mixtures for Clayey Soils, Journal of Computers and Geotechnics, 20(3/4), pp.195-222.
  22. Zienkiewicz, O.C., Chang, C.T., Bettess, P. (1980) Drained, Undrained, Consolidating and Dynamic Behavior Assumptions in Soils, Geotechnique, 30(4), pp.385-395. https://doi.org/10.1680/geot.1980.30.4.385
  23. Zienkiewicz, O.Z., Chan, A.H.C., Pastor, M., Paul, D.K., Shiomi, T. (1990) Static and Dynamic Behavior of Soils: A Rational Approach to Quantitative Solutions. I. Fully Saturated Problems, Proceedings of the Royal Society of London. Series A, 429(1877), pp.285-309. https://doi.org/10.1098/rspa.1990.0061