DOI QR코드

DOI QR Code

팀 결성 분석을 위한 행위자 기반 시뮬레이션 모형

An Agent Based Simulation Model for the Analysis of Team Formation

  • 이성룡 (한국외국어대학교 산업경영공학과)
  • 투고 : 2010.12.02
  • 심사 : 2010.12.15
  • 발행 : 2010.12.31

초록

행위자 기반 시뮬레이션은 시스템을 구성하고 있는 개체들이 자율적인 판단과 기억에 의해 상호 영향을 주면서 주어진 환경에 대응할 때 일정 시간이 경과한 후 시스템에 어떠한 현상이 발생하는가를 관찰하기 위하여 사용된다. 본 논문에서는 팀 결성의 행태를 분석하기 위한 행위자 기반 시뮬레이션 모형을 개발하였다. 팀의 결성은 팀 구성원 개개인의 선택과 판단에 의하지만 어느 한 개인의 일방적인 의사에 의해 이루어지기 보다는 여러 구성원의 상호 관계에 의한 것이라는 점, 그리고 이렇게 구성된 팀의 성취도는 경험이 반복될수록 변화한다는 점 등이 생태학적인 접근법을 가능하게 한다. 개발한 모형은 Netlogo 4.1으로 구현하였고 모의시험을 통해 검증하였다. 모의시험의 결과는 행위자 기반 시뮬레이션의 특성인 규칙의 적용 및 판단, 기억 및 진화의 속성을 잘 묘사할 수 있음을 보여주었다. 개발한 모형을 발전시킴으로써 팀 결성의 다양한 생태학적 분석에 적용이 가능하다.

Agent based simulation is an approach for the analysis of a system's long term behavior where the entities in the system behave independently by their own judgement and memory, but influence each other to cope with given environment. In this paper we developed an agent based simulation model for the analysis of behavioral mechanism of team formation. In the process of team formation members' mutual preference is an important factor although each member can join up with one's own will. Also a team performance can vary by the member's own experience. We implemented the developed model using Netlogo 4.1, and verified the model by simulation. From the simulation results we found that the model successfully performed necessary functions using behavioral rules, judgments, and evolutionary processes by memory. As a further study we will be able to apply the model for analyzing various ecological behavior of team formation.

키워드

참고문헌

  1. V. Albino, N. Carbonara, I. Giannoccaro, I., "Supply chain management models for industrial districts: an agent-based simulation study," International Journal of Intelligent Systems Technologies and Applications, vol. 6, no. 3-4, pp. 332-348, 2009. https://doi.org/10.1504/IJISTA.2009.024263
  2. T. Araujo and M. Aubyn, "Education, neighbothood effects and growth: An agent-based model approach," Advances in Complex Systems, vol. 11, no. 1, pp. 99-117, 2008. https://doi.org/10.1142/S0219525908001441
  3. E. Bonabeau, "Agent-based modeling: methods and techniques for simulating human systems," Proceedings of the National Academy of Sciences of the United States of America, vol. 99, suppl. 3, pp. 7280-7287, May 2002. https://doi.org/10.1073/pnas.082080899
  4. D.L. DeAngelis and W.M. Mooij, "Individual-based modeling of ecological and evolutionary processes," Annual Review of Ecology, Evolution, and Systematics, vol. 36, pp. 147-168, Dec. 2005. https://doi.org/10.1146/annurev.ecolsys.36.102003.152644
  5. A. Flache and M. Mas, "Why do faultlines matter? A computational model of how strong demographic faultlines undermine team cohesion," Simulation Modelling Practice and Theory, vol. 16, pp. 175-191, 2008. https://doi.org/10.1016/j.simpat.2007.11.020
  6. M.E. Gaston and M. DesJardins, "The effect of network structure on dynamic team formation in multi-agent systems," Computational Intelligence, vol. 24, Issue 2, pp. 122-157, 2008. https://doi.org/10.1111/j.1467-8640.2008.00325.x
  7. V. Grimm and S.F. Railsback, Individual-based modeling and ecology, Princeton University Press, Princeton, NJ, 2005.
  8. V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S. Heinz, G. Huse, A. Huth, J.U. Jepsen, U., C. Jorgensen, W.M. Mooij, B. Muller, G. Pe'er, C. Piou, S.F. Railsback, A.M. Robbins, M.M. Robbins, E. Rossmanith, N. Ruger, E. Strand, S. Souissi, R.A. Stillman, R. Vabo, U. Visser, and D.L. DeAngelis, "A standard protocol for describing individual-based and agent-based models," Ecological Modelling, vol. 198, pp. 115-126, 2006. https://doi.org/10.1016/j.ecolmodel.2006.04.023
  9. V. Grimm, U. Berger, D.L. DeAngelis, J.G. Polhill, J. Giske, and S.F. Railsback, "The ODD protocol: a review and first update," Ecological Modelling, vol. 221, pp. 2760-2768, 2010. https://doi.org/10.1016/j.ecolmodel.2010.08.019
  10. C. Guttmann and I. Zukerman, "Agents with limited modeling abilities: implications on collaborative problem solving," Journal of Computer Systems Science and Engineering, vol. 21, no. 3, pp. 183-196, 2006.
  11. T. Wagner, "An agent-oriented approach to industrial automation systems," Agent Technologies, Infrastructures, Tools, and Applications for E-Services, LNCS 2592, pp. 314-328, 2003.
  12. U. Wilensky, NetLogo Ants model, http://ccl.northwestern.edu/netlogo/models/Ants, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 1997.
  13. U. Wilensky, NetLogo Flocking model, http://ccl.northwestern.edu/netlogo/models/Flocking, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 1998.
  14. D.D. Wu, X. Kefan, L. Hua, Z. Shi, and D.L. Olson, "Modeling technological innovation risks of an entrepreneurial team using system dynamics: An agent-based perspective," Technological Forecasting & Social Change, vol. 77, pp. 857-869, 2010. https://doi.org/10.1016/j.techfore.2010.01.015