Influences of Water Level and Vegetation Presence on Spatial Distribution of DOC and Nitrate in Wetland Sediments

수심의 정도와 식생의 유무에 따른 인공습지 토양 내 유기탄소와 질산염의 공간적 분포

  • 서주영 (연세대학교 사회환경시스템 공학부 토목환경공학과) ;
  • 송근예 (연세대학교 사회환경시스템 공학부 토목환경공학과) ;
  • 강호정 (연세대학교 사회환경시스템 공학부 토목환경공학과)
  • Received : 2010.03.26
  • Accepted : 2010.08.18
  • Published : 2010.08.31

Abstract

Wetlands are a well known ecosystem which have high spatial-temporal heterogeneity of chemical characteristics. This high heterogeneity induces diverse biogeochemical processes, such as aerobic decomposition, denitrification, and plant productivity in wetlands. Understanding the dynamics of dissolved organic carbon (DOC) and inorganic nitrogen in wetlands is important because DOC and inorganic nitrogen are main factors controlling biological processes in wetlands. In this study, we assessed spatial distribution of DOC and inorganic nitrogen with relation to the different hydrology and vegetation in created wetlands. Both DOC and nitrate contents were significantly higher in vegetated areas than open areas. Different water levels also affected DOC contents and their quality. Average DOC contents were $0.37mg{\cdot}g^{-1}$ in deep riparian (DR) and $0.31mg{\cdot}g^{-1}$ in shallow riparian (SR). These results appeared to be related to the interaction between carbon supply by vegetation and microbial decomposition. On the other hand, inorganic nitrogen contents were not affected by water level differences. This result indicates that presence/absence of vegetation could be a more important factor than hydrology in the spatial dynamics of inorganic nitrogen. In conclusion, we observed that vegetation and hydrology differences induced spatial distribution of carbon and nitrogen which are directly related to biogeochemical processes in wetlands.

습지는 식생과 수위 정도에 따라 다양한 물리 화학적 특성을 보이는 생태계로 작은 공간내에서도 다양한 생지화학적 반응이 일어날 수 있다. 특히, 용존유기탄소와 무기질소는 습지 내 생물학적 반응 정도를 결정하는 주요 인자로 탄소와 질소의 동태를 파악하고, 습지 환경의 변화 즉, 식생과 수위 및 계절변화에 따른 시공간적 패턴을 이해하는 것이 중요하다. 본 연구는 실험을 위해 인공적으로 건설, 운용되고 있는 인공습지에서 식생유무와 수심정도, 계절에 따라 토양시료를 채취, 분석하였다. 그 결과, 용존유기탄소와 질산염의 함량이 식생이 있는 지역에서 모두 높게 나타났다. 용존탄소는 식생이 있는 경우, 수심이 깊은 지역에서는 평균 $0.37mg{\cdot}g^{-1}$, 수심이 낮은 지역에서는 $0.31mg{\cdot}g^{-1}$로 나타나 수위 정도에 따라 차이를 보였다. 이는 식생에서 제공되는 뿌리 삼출물의 증가와, 미생물의 유기물 분해작용의 복합적인 영향에 의한 것으로 판단된다. 반면, 질산염 함량은 수심에 따라 유의한 차이를 나타내지 않았으며, 이는 식생의 유무가 수심보다 질산염의 동태에 주요 영향을 미치는 것으로 볼 수 있다. 본 연구결과, 습지의 환경조건, 특히 수심이나 식생의 유무에 따라 탄소와 질소의 양적, 질적인 차이가 나타나며, 이는 습지 내에서 진행되는 생지화학적 반응의 시공간적 패턴에 영향을 미칠 것으로 보인다.

Keywords

References

  1. 송근예, Denitrification Process and Denitrifying Bacterial Community Structure in Created Wetlands at Different Scales. 박사학위논문, 이화여자대학교, 2009.
  2. Anderson, J.M. and Ingram, J.S.I., Tropical soil biology and fertility : A handbook of methods, CAB International, Wallingford, pp. 74-75, 1989.
  3. Chin, Y.P., Aiken, G., and O'Laughin, E., Molecular weight, polydispersity and spectroscopic properties of aquatic humic substances, Environmental Science and Technology, Vol. 28, pp. 1853-1858, 1994. https://doi.org/10.1021/es00060a015
  4. Degens, B.P., Schipper, L.A., Sparling, G.P., and Duncan, L.C., Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biology & Chemistry, Vol. 33, pp. 1143-1153, 2001. https://doi.org/10.1016/S0038-0717(01)00018-9
  5. Freeman, C., Fenner, N., Ostle, N., Kang, H., Dowrick, D., Reynolds, B., Lock, M., Sleep, D., Hughes, S. and Hudson, J., Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels, Nature, Vol. 430, pp. 195-198, 2004. https://doi.org/10.1038/nature02707
  6. Jang, I., Lee, S., Hong, J.-H. and Kang, H., Methane oxidation rates in forest soils and their controlling variables: a review and a case study in Korea. Ecological Research, Vol. 21, pp. 849-854, 2006. https://doi.org/10.1007/s11284-006-0041-9
  7. Kang, H., Lee, S-H., Lee, S-M., and Jung, S., Positive relationships between phenol oxidase activity and extractable phenolics in estuarine soils. Chemistry and Ecology, Vol. 25, pp. 99-106, 2009. https://doi.org/10.1080/02757540902758743
  8. Kang, H., Freeman, C. and Kim, S-Y., Variations of DOC and Phenolics in Pore-water of Peatlands, Korean J. Limnology, Vol. 35, pp. 306-311, 2002.
  9. Knowles, R., Denitrification, Microbiological Reviews, Vol. 46, pp. 43-70, 1982
  10. Lawson, G.J., Cultivating reeds (Phragmites australis) for root zone treatment of sewage, Contract report by the Institute of Terrestrial Ecology for Water Research Centre No. 965, UK, 1985.
  11. Mitch, W.J., Gosselink, J.G., Wetlands, 4th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.
  12. Paul, E.A., and Clark, F.E., Soil Microbiology and Biochemistry. Academic Press, San Diego, California, 1996.
  13. Sarkaner KV, Ludwing CH., Lignins: occurrence, formation, structure and reactions, Wiley-Interscience, New York, pp. 916, 1971.
  14. Sundberg, C., Stendahl, J.S.K., Tonderski, K., and Lindgren, P.E., Overland flow systems for treatment of landfill leachates-potential nitrification and structure of the ammoniaoxidising bacterial community during a growing season, Soil Biology & Biochmistry, Vol. 39, pp. 127-138, 2007. https://doi.org/10.1016/j.soilbio.2006.06.016
  15. Song, K., Lee, S.-H., Mitsch, W. J. and Kang, H. Different responses of denitrification rates and denitrifying bacterial communities to hydrologic pulsing in created wetlands. Soil Biology and Biochemistry, Vol. 42, pp. 1721-1727, 2010. https://doi.org/10.1016/j.soilbio.2010.06.007
  16. Tao, W., Hall, K.J., and Duff, S.J.B., Microbial biomass and heterotrophic production of surface flow mesocosm wetlands treating woodwate leachate: responses to hydraulic and organic loading and relations with mass reduction, Ecological Engineering, Vol. 31, pp. 132-139, 2007. https://doi.org/10.1016/j.ecoleng.2007.06.007
  17. Tareq, S.M., Tanaka, N., and Ohta, K., Biomarker signature in tropical wetland: lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment, Science of the Total Environment, Vol. 324. pp. 91–103, 2004. https://doi.org/10.1016/j.scitotenv.2003.10.020
  18. Tiedje, J.M., Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In. Zehnder, A.J.B.(Ed.), Biology of Anaerobic Microorganisms,isms, isand Sons, New York, 1988.
  19. USEPA, Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water, EPA/ 600/R-05/055. 2005.
  20. Wallenstein, M.D., Myrold, D.D., Firestone, M., and Voytek, M., Environmental controls on denitrification rates: insights from molecular methods, Ecological Applications, Vol. 16, pp. 2143-2152, 2006. https://doi.org/10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
  21. Wetzel, R.G., Gradient dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems, Hydrobiologia, Vol. 229, No. 1, pp. 181-198, 1992. https://doi.org/10.1007/BF00007000