DOI QR코드

DOI QR Code

Ten new microsatellite markers in cutlassfish Trichiurus lepturus derived from an enriched genomic library

  • An, Hye-Suck (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Jeong-Ho (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Noh, Jae-Koo (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Hyun-Chul (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Park, Chul-Ji (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Min, Byung-Hwa (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Myeong, Jeong-In (Genetics and Breeding Research Center, National Fisheries Research and Development Institute)
  • Received : 2010.03.22
  • Accepted : 2010.05.27
  • Published : 2010.09.30

Abstract

Cutlassfish (Trichiurus lepturus Linnaeus 1758) is a commercially important fish in Korea. In recent years, the catch of cutlassfish in the coastal waters of Korea has significantly declined. Its genetic characterization has been little studied. To assist conservation and management efforts, we isolated and characterized 10 microsatellite loci using an enrichment method based on magnetic/biotin capture of microsatellite sequences from a size-selected genomic library. To characterize each locus, 30 individuals from a natural T. lepturus population in the coastal waters of Jeju Island, Korea, were genotyped. All loci except two, KTh9B and KTh22A, were polymorphic, with an average of 14.3 alleles per locus (range, 10 22). The mean observed and expected heterozygosities were 0.80 (range, 0.50 0.97) a 0.82 (range, 0.68 0.95), respectively. A significant deviation from Hardy-Weinberg equilibrium was observed at three loci (KTh6B, KTh10, and KTh16). This high variability indicates that these microsatellites may be useful for high-resolution studies of population genetics.

Keywords

References

  1. An HS, Cho KC, Park JY. 2005. Eleven new highly polymorphic microsatellite loci in the yellow croaker, Pseudosciaena crocea Inheritance. Mol Ecol Notes. 5:866-868. https://doi.org/10.1111/j.1471-8286.2005.01097.x
  2. An HS, Kim KS, Lee HY, Kim EM, Kwon MG. 2009. Isolation and characterization of polymorphic microsatellite markers for the black rockfish Sebastes inermis. Genes Genomics. 31:29-34.
  3. Asahida T, Kobayashi T, Saitoh K, Nakayama I. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentrations of urea. Fish Sci. Tokyo. 62:727-730.
  4. Banks SC, Piggott MP, Williamson JE, Bove U, Holbrook NJ, Beheregaray LB. 2007. Oceanic variability and coastal topography shape genetic structure in a longdispersing sea urchin. Ecology. 88(12):3055-3064. https://doi.org/10.1890/07-0091.1
  5. Brandstrom M, Ellegren H. 2008. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res. 18:881-887.
  6. Callen DF, Thompson AD, Shen Y, Phillips HA, Mulley JC, Sutherland GR. 1993. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am J Hum Genet. 52:922-927.
  7. Carleton KL, Streelman JT, Lee BY, Garnhart N, Kidd M, Kocher TD. 2002. Rapid isolation of CA microsatellites from the tilapia genome. Anim Genet. 33:140-144. https://doi.org/10.1046/j.1365-2052.2002.00817.x
  8. DeWoody JA, Avise JC. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol. 56:461-473. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x
  9. Froese R, Pauly D. 1997. Fishbase-a biological database on fish (software). ICLARM, Manila, Philippines. p. 256.
  10. Gardner MG, Cooper SJB, Bull CM, Grant WN. 1999. Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. J Hered. 90:301-304. https://doi.org/10.1093/jhered/90.2.301
  11. Hamilton MB, Pincus EL, DiFiore A, Fleischer RC. 1999. Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechnology. 27:500-507.
  12. Hedgecock D, Barber PH, Edmands S. 2007. Genetic approaches to measuring connectivity. Oceanography 20, 70.
  13. Hoarau G, Rijnsdrop AD, Van der Veer HW, Stam WT, Olsen JL. 2002. Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large scale spatial and temporal homogeneity. Mol Ecol. 11:1165-1176. https://doi.org/10.1046/j.1365-294X.2002.01515.x
  14. Hutchinson WF, Carvalho GR, Rogers SI. 2001. Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites. Mar Ecol Prog Ser. 223:251-260. https://doi.org/10.3354/meps223251
  15. Jarne PJ, Lagoda JL. 1996. Microsatellites, from molecules to populations and back. Trends Ecol Evol. 11:424-429. https://doi.org/10.1016/0169-5347(96)10049-5
  16. Kang MH. 2007. Fishery production survey. Ministry of Maritime Affairs & Fisheries Press, Korea. p. 35-95.
  17. Kilger C, Schmid K. 1994. Rapid characterization of bacterial clones by microwave treatment and PCR. Trends Genet. 10:149. https://doi.org/10.1016/0168-9525(94)90082-5
  18. Li Q, Park C, Kijima A. 2002. Isolation and characterization of microsatellite loci in the Pacific abalone, Haliotis discus hannai. J Shell Res. 212:811-815.
  19. O'Connell M, Dillon MC, Wright JM, Bentzen P, Merkouris S, Seeb J. 1998. Genetic structuring among Alaskan Pacific herring (Clupea pallasi) populations identified using microsatellite variability. J Fish Biol. 53:150-163. https://doi.org/10.1111/j.1095-8649.1998.tb00117.x
  20. O'Reilly PT, Canino MF, Bailey KM, Bentzen P. 2004. Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol. 13:1799-1814. https://doi.org/10.1111/j.1365-294X.2004.02214.x
  21. Pampoulie C, Steingrund P, Stefansson MO, Danıelsdottir AK. 2008. Genetic divergence among East Icelandic and Faroese populations of Atlantic cod provides evidence for historical imprints at neutral and non-neutral markers. ICES J Mar Sci. 65:65-71.
  22. Pemberton JM, Slate J, Bancroft DR, Barrett JA. 1995. Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol. 4:249-252. https://doi.org/10.1111/j.1365-294X.1995.tb00214.x
  23. Raymond M, Rousset F. 1995. GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. J Hered. 86:248-249.
  24. Rice WR. 1989. Analyzing tables of statistical tests. Evol Int J Org Evol. 43:223-225. https://doi.org/10.2307/2409177
  25. Riginos C, Nachman MW. 2001. Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation. Mol Ecol. 10:1439-1453. https://doi.org/10.1046/j.1365-294X.2001.01294.x
  26. Ruzzante DE, Taggart CT, Cook D. 1998. A nuclear DNA basis for shelf- and bank-scaled population structure in northwest Atlantic cod (Gadus morhua): Labrador to Georges Bank. Mol Ecol. 7:1663-1680. https://doi.org/10.1046/j.1365-294x.1998.00497.x
  27. Schneider S, Kueffer JM, Roessli D, Excoffier L. 2000. ARLEQUIN version 2.0: a software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
  28. Shaw P, Turan C, Wright J, O'Connell M, Carvalho G. 1999. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus) with direct comparison to allozyme and mtDNA data. Heredity. 83: 490-499. https://doi.org/10.1038/sj.hdy.6885860
  29. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 4:135.
  30. Ward RD, Woodwark M, Skibinski DOF. 1994. A comparision of genetic diversity levels in marine freshwater and anadromous fishes. J Fish Biol. 44:213-232. https://doi.org/10.1111/j.1095-8649.1994.tb01200.x
  31. Yokoyama E, Sakamoto T, Sugaya T, Kitada S. 2006. Six polymorphic microsatellite loci in the Japanese Spanish mackerel, Scomberomorus niphonius. Mol Ecol Notes. 6:323-324. https://doi.org/10.1111/j.1471-8286.2005.01217.x

Cited by

  1. Development and characterization of 15 microsatellite loci from Lycorma delicatula (Hemiptera: Fulgoridae) vol.15, pp.4, 2010, https://doi.org/10.1080/19768354.2011.604936
  2. Development and characterization of microsatellite markers for an endangered species, $Epinephelus$ $bruneus$, to establish a conservation program vol.16, pp.1, 2012, https://doi.org/10.1080/19768354.2011.611255
  3. Genetic diversity assessment of Aconitum coreanum (H. Lév.) Rapaics (Ranunculaceae), an endangered plant species in Korea, using microsatellite markers vol.1, pp.2, 2010, https://doi.org/10.12651/jsr.2012.1.2.224
  4. Isolation and inheritance of microsatellite loci for the oily bittering (Acheilognathus koreensis): applications for analysis of genetic diversity of wild populations vol.16, pp.4, 2010, https://doi.org/10.1080/19768354.2011.645554
  5. 서해안에서 채집된 꽃게(Portunus trituberculatus) 집단에 대한 microsatellite 좌위의 분석 vol.23, pp.9, 2010, https://doi.org/10.5352/jls.2013.23.9.1088
  6. Development of Polymorphic Microsatellite Markers Suitable for Genetic Linkage Mapping of Olive Flounder Paralichthys olivaceus vol.16, pp.4, 2013, https://doi.org/10.5657/fas.2013.0303