Hypoglycemic and Hypolipidemic Effect of Rosa rugosa Radix in Streptozotocine-induced Diabetic Rats

  • Kim, Eun-Jung (Department of Physical Therapy, College of Health and Wellfare, Dongshin University) ;
  • Kim, Gye-Yeop (Department of Physical Therapy, College of Health and Wellfare, Dongshin University)
  • Received : 2010.09.03
  • Accepted : 2010.10.07
  • Published : 2010.10.25

Abstract

The antidiabetic effects of Rosa rugosa Radix were investigated in streptozotocine-induced diabetic rats. Research methods and procedure: In the present study, effects of oral administration of Rosa rugosa Radix extract(100, 250, and 500 mg/kg body wt.) for 28 days on the level of serum glucose, total cholosterol, triglycerides, cereatinine, aspartate amino transferase(AST) and alanine amino transferase(ALT) in normal and streotozotocine-induced diabetic rats were evaluated. Oral administrations of the Rosa rugosa Radix extract significantly decreased serum glucose, total cholesterol, triglyceride, AST, and ALT levels, while increased serum insulin and HDL-C in diabetic rats(p<0.05). The hypoglycemic effect of the Rosa rugosa Radix extract was more effective than normal group. It is concluded that the Rosa rugosa Radix must be considered as excellent candidate for future studies on diabetes mellitus.

Keywords

References

  1. Cryer, P.E. Banting Lecture. Hypoglycemia: the limiting factor in the management of IDDM. Diabetes. 43(11):1378-1389, 1994. https://doi.org/10.2337/diabetes.43.11.1378
  2. Bhaskarabhatla, K.V., Birrer, R. Physical activity and diabetes mellitus. Compr Ther. 31: 291-298, 2005. https://doi.org/10.1385/COMP:31:4:291
  3. Altan, V.M. The pharmacology of diabetic complications. Curr Med Chem. 10(15):1317-1327, 2003. https://doi.org/10.2174/0929867033457287
  4. Strojek, K. Features of macrovascular complications in type 2 diabetic patients. Acta Diabetol. 40(2):334-337, 2003. https://doi.org/10.1007/s00592-003-0115-x
  5. Got, I. Peripheral vascular disease and diabetic foot. Rev Med Interne. 29(2):249-259, 2008. https://doi.org/10.1016/j.revmed.2007.09.023
  6. Resl, M., Clodi, M. Diabetes and cardiovascular complications. Wien Med Wochenschr. 160(1-2):3-7, 2010. https://doi.org/10.1007/s10354-010-0744-y
  7. Das Evcimen, N., King, G.L. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 55(6):498-510, 2007. https://doi.org/10.1016/j.phrs.2007.04.016
  8. Aronson, D. Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol. 45: 1-16, 2008. https://doi.org/10.1159/000115118
  9. Drews, G., Krippeit-Drews, P., Düfer, M. Oxidative stress and beta-cell dysfunction. Pflugers Arch. 460(4):703-718, 2010. https://doi.org/10.1007/s00424-010-0862-9
  10. Vincent, A.M., Hinder, L.M., Pop-Busui, R., Feldman, E.L. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J Peripher Nerv Syst. 14(4):257-267, 2009. https://doi.org/10.1111/j.1529-8027.2009.00237.x
  11. Grover, J.K., Yadav, S., Vats, V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. 81(1):81-100, 2002. https://doi.org/10.1016/S0378-8741(02)00059-4
  12. Makom Ndifossap, I.G., Frigerio, F., Casimir, M., Ngueguim Tsofack, F., Dongo, E., Kamtchouing, P., Dimo, T., Maechler, P. Sclerocarya birrea(Anacardiaceae) stem-bark extract corrects glycaemia in diabetic rats and acts on beta-cells by enhancing glucose-stimulated insulin secretion. J Endocrinol. 205(1):79-86, 2010. https://doi.org/10.1677/JOE-09-0311
  13. Jung, M., Park, M., Lee, H.C., Kang, Y.H., Kang, E.S., Kim, S.K. Antidiabetic agents from medicinal plants. Curr Med Chem. 13(10):1203-1218, 2006. https://doi.org/10.2174/092986706776360860
  14. Li, W.L., Zheng, H.C., Bukuru, J., De Kimpe, N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol. 92(1):1-21, 2004. https://doi.org/10.1016/j.jep.2003.12.031
  15. Shanghai Science-technology Publication. Dictionary of Chinese Medicine, Vol. 4, Shogakukan, Tokyo(in Japan), 1985.
  16. Hatano, T., Ogawa, N., Yasuhara T., Okuda, T. Tannins of rosaceous plants. Ⅷ. Hydrolyzable tannin monomer having a valenoyl group from flower petals of Rosa rugosa THUNB. Chem Pharm Bull. 38: 3308-3313, 1990. https://doi.org/10.1248/cpb.38.3308
  17. Hatano, T., Ogawa, N., Shingu T., Okuda, T. Tannins of rosaceous plants. Ⅸ. Rugosin D, E, F, and G, dimeric and trimeric hydropyzable tannins with valenoyl group(s) from petals of Rosa rugosa THUNB. Chem Pharm Bull. 38: 3341-3346, 1990. https://doi.org/10.1248/cpb.38.3341
  18. Bergmeyer, H.U., Bernt, E. Enzymatic determination of ketone bodies in blood. Enzymol Biol Clin (Basel). 19: 65-76, 1965.
  19. Cho, E.J., Yokozawa, T., Kim, H.Y., Shibahara, N., Park, J.C. Rosa rugosa attenuates diabetic oxidative stress in rats with streptozotocin-induced diabetes. Am J Chin Med. 32(4):487-496, 2004. https://doi.org/10.1142/S0192415X04002132
  20. Cheol, P.J., Chul, K.S., Moon, H.J., Choi, S.H., Yeon, L.K., Won, C.J. Anti-hepatotoxic effects of Rosa rugosa root and its compound, rosamultin, in rats intoxicated with bromobenzene. J Med Food. 7(4):436-441, 2004. https://doi.org/10.1089/jmf.2004.7.436
  21. Park, J.C., Kim, S.C., Choi, M.R., Song, S.H., Yoo, E.J., Kim, S.H., Miyashiro, H., Hattori, M. Anti-HIV protease activity from rosa family plant extracts and rosamultin from Rosa rugosa. J Med Food. 8(1):107-109, 2005. https://doi.org/10.1089/jmf.2005.8.107
  22. Jung, H.J., Nam, J.H., Choi, J., Lee, K.T., Park, H.J. 19 Alpha-hydroxyursane-type triterpenoids: antinociceptive anti-inflammatory principles of the roots of Rosa rugosa. Biol Pharm Bull. 28(1):101-104, 2005. https://doi.org/10.1248/bpb.28.101
  23. Lenzen, S. The mechanisms of alloxan and streptozotocin-induced diabetes. Diabetologia. 51(2):216-226, 2007.
  24. Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 50(6):537-546, 2001.
  25. Cho, E.J., Yokozawa, T., Kim, H.Y., Shibahara, N., Park, J.C. Rosa rugosa attenuates diabetic oxidative stress in rats with streptozotocin-induced diabetes. Am J Chin Med. 32(4):487-496, 2004. https://doi.org/10.1142/S0192415X04002132
  26. Rajalingam, R., Srinivasan, N., Govindarajulu, P. Effects of alloxan induced diabetes on lipid profiles in renal cortex and medulla of mature albino rats. Indian J Exp Biol. 31(6):577-579, 1993.
  27. Pathak, R.M., Ansari, S., Mahmood, A. Changes in chemical composition of intestinal brush border membrane in alloxan induced chronic diabetes. Indian J Exp Biol. 19(5):503-505, 1981.
  28. Fortson, W.C., Tedesco, F.J., Starnes, E.C., Shaw, C.T. Marked elevation of serum transaminase activity associated with extrahepatic biliary tract disease. J Clin Gastroenterol. 7(6):502-505, 1985. https://doi.org/10.1097/00004836-198512000-00012
  29. Mansour, H.A., Newairy, A.S., Yousef, M.I., Sheweita, S.A. Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats. Toxicology. 170(3):221-228, 2002. https://doi.org/10.1016/S0300-483X(01)00555-8
  30. Shami, S.K., Chittenden, S.J. Microangiopathy in diabetes mellitus, II: features, complications and investigation. Diabetes Res. 17(4):157-168, 1991.
  31. Dahl-Jorgensen, K. Diabetic microangiopathy. Acta Paediatr Suppl 425: 31-34, 1998.