References
- C. Rydh, ‘Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage’ J. Power Sources, 80, 21 (1999). https://doi.org/10.1016/S0378-7753(98)00249-3
- G. Radford J. Cox, R. Wills, and E. Walsh, ‘Electrochemical characterisation of activated carbon particles used in redox flow battery electrode’ J. Power Sources, 185,1499 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.020
- P. Qian, H. Zhang, J. Chen, Y. Wen, Q. Luo, Z. Liu, D. You,and B. Yi, ‘A novel electrode-bipolar plate for vanadium redox flow battery applications’ J. Power Sources, 175,613 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.006
- G. Oriji, Y. Katayama, and T. Miura, ‘Investigation on V(IV)/V(V) species in a vanadium redox flow battery’Electrochimica Acta, 49, 3091 (2004). https://doi.org/10.1016/j.electacta.2004.02.020
- F. Xue, Y. Wang, W. wang, and X. Wang, ‘Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery’ Electrochimica Acta, 53, 6636 (2008). https://doi.org/10.1016/j.electacta.2008.04.040
- K. Huang, X. Li, S. Liu, N. Tan, and L. Chen, ‘Research progress of vanadium redox flow battery for energy storage in China’ Renewable Energy, 33, 186 (2008). https://doi.org/10.1016/j.renene.2007.05.025
- H. Vafiadis and M. Kazacos, 'Evaluation of membrane for the novel vanadium bromine redox flow cell' J. Membrane Science, 279, 394 (2006). https://doi.org/10.1016/j.memsci.2005.12.028
- M. Chakrabati, R. Dryfe, and E. Roberts, ‘Evaluation of electrolyte for redox flow battery applications’ Electrochimica Acta, 52, 2189 (2007). https://doi.org/10.1016/j.electacta.2006.08.052
- F. Rahman and M. Kazacos, ‘Vanadium redox battery : Positive-cell electrolyte studies’ J. Power Sources, 189,1212 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.113
- H. Zhu, Y. Zhang, L. Yue, W. Li, G. Li, D. Shu, and H.Chen, ‘Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery’ J. Power Sources, 184,637 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.016
- H. Xhou, H. Zhang, P. Zhao, and B. Yi, ‘A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery’ Electrochimica Acta, 51, 6304 (2006). https://doi.org/10.1016/j.electacta.2006.03.106
- B. Sun and M. Kazacos, ‘Chemical Modification and electrochemical behaviour of graphite fibre in acidic vanadium solution’ Electrochimica Acta, 36, 513 (1991). https://doi.org/10.1016/0013-4686(91)85135-T
- B. Sun and M. Kazacos, ‘Chemical Modification of graphite electrode materials for vanadium redox flow battery application’ Electrochimica Acta, 37, 2459 (1992). https://doi.org/10.1016/0013-4686(92)87084-D
- B. Sun and M. Kazacos, ‘Modification of graphite electrode materials for vanadium redox flow battery application’ Electrochimica Acta, 37, 1253 (1992). https://doi.org/10.1016/0013-4686(92)85064-R
- W. Wang and X. Wang, ‘Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery’ Electrochimica Acta, 52, 6755 (2007). https://doi.org/10.1016/j.electacta.2007.04.121
-
B.E. Conway and G. Jerkiewicz, ‘Nature of electrosorbed H and its relation to metal dependance of catalysis in cathodic
$H_2$ evolution’ Solid State Ionics, 150, 93 (2002). https://doi.org/10.1016/S0167-2738(02)00266-7
Cited by
- Application of Porous Carbon Catalyst Activating Reaction of Positive Electrode in Vanadium Redox Flow Battery vol.23, pp.3, 2014, https://doi.org/10.5855/ENERGY.2014.23.3.150
- Electrochemical Properties of Graphite-based Electrodes for Redox Flow Batteries vol.32, pp.2, 2011, https://doi.org/10.5012/bkcs.2011.32.2.571