DOI QR코드

DOI QR Code

Study of Ultrasonic Nonlinearity in Heat-Treated Material

열처리된 재료의 초음파 비선형성에 관한 연구

  • Li, Weibin (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Jae-Sun (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Cho, Youn-Ho (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2010.01.05
  • Accepted : 2010.04.01
  • Published : 2010.06.01

Abstract

Ultrasonic nonlinearity is very sensitive to changes in material properties. This paper describes the study of the correlation between heat treatment and ultrasonic nonlinearity by taking nonlinear factors into consideration. A modified formula was proposed for ultrasonic velocity. This formula indicated that the changes occurring in nonlinearity during heat treatments cause changes in the ultrasonic velocity. The experimental results show that the relative nonlinearity parameters calculated from the modified ultrasonic velocities and the ratio of amplitudes of the second harmonic and fundamental wave are in good agreement. The experimental results prove that heat treatment can result in changes in material nonlinearity. Moreover, the relative nonlinearity parameter calculated from the modified velocity formula is has a large value. Since this parameter has high sensitivity to changes in nonlinearity, it can be used to represent the relative nonlinearity change calculated in this study by using the modified formula for ultrasonic velocity.

비선형 초음파는 선형 초음파와 비교하였을 때 재료의 물성 변화에 민감하게 반응한다. 이 연구의 목표는 비선형 요소를 포함하여 열처리 조건과 초음파 비선형성의 상관관계를 알아내는 것이다. 본 연구에서 기존의 방법과는 다른 수정된 초음파속도계산 식이 새롭게 제안되었다. 이것은 열처리된 재질에서 초음파 속도변화가 재료의 비선형성 때문에 발생하는 것을 찾아내었다. 실험을 통하여 수정된 초음파 속도와 1차 조화 및 2차 조화파의 진폭 비율이 서로 동일한 경향을 보이는 것을 알아냈다. 그리고 수정된 초음파속도식을 통해 계산된 상대적인 비선형계수는 기존의 방법을 이용하였을 때보다 더 민감함을 알아냈다.

Keywords

References

  1. Yost, W. T. and Cantrell, J.H, 1990, "Material Characterization Using Acoustic Nonlinearity Parameters And Harmonic Generation, Engineering Materials," Review of progress in Quantitative Nondestructive Evaluation, Vol. 11b, No. 28, pp. 1669-1692
  2. Joseph, S.H. and Engmin, J.C., 1981, "Characterization of Heat Treatment In Aluminum Based On Ultrasonic Determination Of The Second And Third Order Elastic Constants," IEEE Ultrasonic symposium, PP. 936-939
  3. Norris, A.N., 1998, "Finite-Amplitude Waves In Solids, in Nonlinear Acoustics," Academic press, New York, pp. 267-269
  4. Meyendorf, N. G., Nagy, P.B. and Rockhlin, S.I., 2004, "Nondestructive Materials Characterization," Springer Press, New York, pp. 206-232
  5. Wallace, D. C., 1967, "Thermoelasticity of Stressed Materials and Comparison of Various Elastic Constants," Physical Review, Vol. 162, No. 3, pp. 776-789. https://doi.org/10.1103/PhysRev.162.776
  6. Yost, W. T. and Breazeale, M. A., 1973, "Ultrasonic Nonlinearity Parameters And Third-Order Elastic Constants Of Germanium Between 300 and $77^{\circ}K$," Physical Review, Vol. 9, No. 2, pp. 510-516.

Cited by

  1. Experimental Study on Corrosion Detection of Aluminum Alloy Using Lamb Wave Mixing Technique vol.40, pp.11, 2016, https://doi.org/10.3795/KSME-A.2016.40.11.919