UNIT-REGULARITY AND STABLE RANGE ONE

HUANYIN CHEN

ABSTRACT. Let R be a ring, and let $\Psi(R)$ be the ideal generated by the set $\{x \in R \mid 1 + sxt \in R \text{ is unit-regular for all } s, t \in R\}$. We show that $\Psi(R)$ has "radical-like" property. It is proven that $\Psi(R)$ has stable range one. Thus, diagonal reduction of matrices over such ideal is reduced.

1. Introduction

Let R be an associative ring with an identity. An element $a \in R$ is regular in case there exists $x \in R$ such that a = axa. If such x can be chosen a unit, $a \in R$ is said to be unit-regular. A ring R is unit-regular in case every element in R is unit-regular. It is worth noting that a regular ring R is unit-regular if and only if for all finitely generated projective right R-modules A, B and C, $A \oplus B \cong A \oplus C$ implies that $B \cong C$. Many authors studied unit-regular rings, e.g. [5, 7]. As is well known, there exists a largest regular ideal M(R) of a ring R. A natural problem is how to construct a kind of ideal to deal with unit-regularity. The motivation of this article is to extend the known results on unit-regular rings to regular ideals. We always use ur(R) to denote the set of all unit-regular elements in R. Let $\Psi(R)$ be the ideal generated by the set $\{x \in R \mid 1 + sxt \in ur(R) \text{ for all } s, t \in R\}.$ We observe that $\Psi(R)$ has "radicallike" property. That is, $M_n(\Psi(R)) = \Psi(M_n(R))$. An ideal I of a ring R has stable range one provided that aR + bR = R with $a \in 1 + I, b \in R$ implies that $a + by \in R$ is invertible. For general theory of stable range conditions, we refer the reader to [6]. Further, we prove that $\Psi(R)$ has stable range one. As an application, the diagonal reduction of matrices over such ideal is studied.

Throughout, all rings are associative with identity. U(R) and $\mathrm{GL}_n(R)$ denote the set of all units of R and the n-dimensional general linear group over R, respectively. The symbol $\mathbb N$ stands for the set of all natural number.

2. Unit-regularity

It is well known that for any $x, y \in R$, $1 + xy \in U(R)$ if and only if $1 + yx \in U(R)$. We extend this simple fact to unit-regularity.

Received January 21, 2009; Revised April 3, 2009. 2000 Mathematics Subject Classification. 16E50, 16U99. Key words and phrases. unit-regularity, stable range one, diagonal reduction.

©2010 The Korean Mathematical Society

Lemma 2.1. Let $x, y \in R$. Then 1 + xy is unit-regular if and only if so is 1 + yx.

Proof. Suppose that 1 + xy is unit-regular. Clearly, one checks that

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1+yx \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ y & 1 \end{array}\right) \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1+xy & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ -y & 1 \end{array}\right) \left(\begin{array}{cc} 1 & -x \\ 0 & 1 \end{array}\right).$$

Hence $\begin{pmatrix} 1 & 0 \\ 0 & 1+ux \end{pmatrix} \in M_2(R)$ is unit-regular. Write

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1+yx \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1+yx \end{array}\right) \left(\begin{array}{cc} c_{11} & c_{12} \\ c_{21} & c_{22} \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 1+yx \end{array}\right),$$

where $\binom{c_{11}}{c_{22}}\binom{c_{12}}{c_{22}} \in GL_2(R)$. Then we get $1+yx=(1+yx)c_{22}(1+yx)$. Let $E=\begin{pmatrix} 1 & 0 \\ 0 & 1+yx \end{pmatrix}\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$. Since

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1+yx \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & c_{22} \end{array}\right) + \left(\begin{array}{cc} 0 & 0 \\ 0 & 1-(1+yx)c_{22} \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right),$$

we get

$$E\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & c_{22} \end{pmatrix} (I_2 - E) + \begin{pmatrix} 0 & 0 \\ 0 & 1 - (1 + yx)c_{22} \end{pmatrix} (I_2 - E) = I_2 - E.$$

This implies that

$$E + \begin{pmatrix} 0 & 0 \\ 0 & 1 - (1 + yx)c_{22} \end{pmatrix} (I_2 - E)$$

$$= I_2 - E \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & c_{22} \end{pmatrix} (I_2 - E) \in GL_2(R).$$

Set $\begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} = (I_2 - E) \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}^{-1}$. Then

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1+yx \end{array}\right) + \left(\begin{array}{cc} 0 & 0 \\ 0 & 1-(1+yx)c_{22} \end{array}\right) \left(\begin{array}{cc} z_{11} & z_{12} \\ z_{21} & z_{22} \end{array}\right) \in \mathrm{GL}_2(R).$$

That is, $\binom{1}{*} \binom{0}{1+yx+\left(1-(1+yx)c_{22}\right)z_{22}} \in \operatorname{GL}_2(R)$. As a result, $u:=1+yx+\left(1-(1+yx)c_{22}\right)z_{22} \in U(R)$. Hence, 1+yx=eu, where $e=(1+yx)c_{22} \in R$ is an idempotent. Therefore $1+yx \in R$ is unit-regular. The converse is symmetric.

Lemma 2.2. An element $a \in R$ is unit-regular if and only if $diag(a, 1, ..., 1) \in M_n(R)$ is unit-regular.

Proof. It is an immediate consequence of [7, Theorem 4].

Let $\Phi(R) = \{x \in R \mid 1 + sxt \in R \text{ is unit-regular for all } s, t \in R\}$, and let $\Psi(R)$ be the ideal generated by the set $\Phi(R)$. We list some examples of such ideal. $\Psi(\mathbb{Z}) = 0$; $\Psi(\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) = 0 \oplus \mathbb{Z}/2\mathbb{Z}$, and that

$$\Psi\left(\left(\begin{array}{cc}\mathbb{Z}/2\mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \\ 0 & \mathbb{Z}/2\mathbb{Z} \end{array}\right)\right) = \left(\begin{array}{cc}\mathbb{Z}/2\mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \\ 0 & \mathbb{Z}/2\mathbb{Z} \end{array}\right).$$

Theorem 2.3. Let R be a ring. Then $\Psi(M_n(R)) = M_n(\Psi(R))$ for all $n \in \mathbb{N}$.

Proof. Given any $A \in \Psi(M_n(R))$, we have $A = A_1 + \cdots + A_m$ $(m \in \mathbb{N})$ with each $A_i \in \Phi(M_n(R))$. Write $A_1 = (a_{ij})$. For any $r \in R$, we have

$$I_n + A_1 \begin{pmatrix} r & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} 1 + a_{11}r & 0 & \cdots & 0 \\ a_{21}r & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}r & 0 & \cdots & 1 \end{pmatrix}$$

is unit-regular. Clearly, there exists $V \in \mathrm{GL}_n(R)$ such that

$$\begin{pmatrix} 1 + a_{11}r & 0 & \cdots & 0 \\ a_{21}r & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}r & 0 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 1 + a_{11}r & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} V.$$

Hence $\begin{pmatrix} 1+a_{11}r & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix} \in M_n(R)$ is unit-regular, and then so is $1+a_{11}r \in R$

from Lemma 2.2. It follows by Lemma 2.1 that $a_{11} \in \Phi(R)$. Likewise, we prove that each $a_{ij} \in \Phi(R)$. Hence, $A_1 \in M_n(\Psi(R))$. Similarly, $A_2, \ldots, A_m \in M_n(\Psi(R))$. Consequently, $A = A_1 + \cdots + A_m \in M_n(\Psi(R))$. We infer that $\Psi(M_n(R)) \subseteq M_n(\Psi(R))$.

Given any $(a_{ij}) \in M_n(\Psi(R))$, then each $a_{ij} \in \Psi(R)$. Write $a_{ij} = b_1 + \cdots + b_k$ with each $b_s \in \Phi(R)(1 \le s \le k)$. For any $(r_{ij}) \in M_n(R)$, we have

$$I_n + \begin{pmatrix} b_1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} (r_{ij}) = \begin{pmatrix} 1 + b_1 r_{11} & b_1 r_{12} & \cdots & b_1 r_{1n} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Clearly, there is $U \in GL_n(R)$ such that

$$U(I_n + \begin{pmatrix} b_1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} (r_{ij})) = \begin{pmatrix} 1 + b_1 r_{11} & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

As $1 + b_1 r_{11} \in R$ is unit-regular, by Lemma 2.2, we have

$$U(I_n + \begin{pmatrix} b_1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} (r_{ij})) \in M_n(R)$$

is unit-regular, and thus so is

$$I_n + \begin{pmatrix} b_1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} (r_{ij}).$$

Thus,
$$\begin{pmatrix} b_1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \dot{0} & \dot{0} & \cdots & \dot{0} \end{pmatrix} \in \Psi(M_n(R))$$
. Likewise, $\begin{pmatrix} b_i & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \dot{0} & \dot{0} & \cdots & \dot{0} \end{pmatrix} \in \Psi(M_n(R))$ for all

i. We infer that $\begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \cdots & \vdots \end{pmatrix} \in \Psi(M_n(R))$. Analogously,

$$\begin{pmatrix} 0 & a_{12} & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in \Psi(M_n(R)).$$

Therefore $(a_{ij}) \in \Psi(M_n(R))$, and so $M_n(\Psi(R)) \subseteq \Psi(M_n(R))$, as required. \square

Proposition 2.4. Let $x, y \in R$. Then $x + y + xy \in ur(R)$ if and only if $x + y + yx \in ur(R)$.

Proof. Suppose that $x+y+xy\in ur(R)$. Then $(x+1)(y+1)-1=x+y+xy\in ur(R)$, and then $1+(x+1)(-y-1)\in ur(R)$. In view of Lemma 2.1, $1+(-y-1)(x+1)\in ur(R)$, whence $(y+1)(x+1)-1\in ur(R)$. That is, $x+y+yx\in ur(R)$. The converse is analogous.

Let $e \in R$ be an idempotent and $a \in R$. In [7, Theorem 4], Lam and Murray proved that $eae \in ur(eRe)$ if and only if $eae + 1 - e \in ur(R)$. We extend this result as follows.

Proposition 2.5. Let $e \in R$ be an idempotent of a ring R and $a \in R$. Then the following are equivalent:

- (1) $eae \in ur(eRe)$.
- (2) $ae + 1 e \in ur(R)$.
- (3) $ea + 1 e \in ur(R)$.

Proof. (1) \Rightarrow (2) Since $eae \in ur(eRe)$, we can find some $u \in U(eRe)$ such that eae = (eae)(eue)(eae). Hence eae+1-e = (eae+1-e)(eue+1-e)(eae+1-e). Clearly, $eue+1-e \in U(R)$. This means that $1+e(ae-e) \in ur(R)$. It follows from Lemma 2.1 that $1+(ae-e)e \in ur(R)$. That is, $ae+1-e \in ur(R)$.

 $(2) \Rightarrow (1)$ As $ae+1-e=1+(ae-e)e \in ur(R)$, by Lemma 2.1, we have $eae+1-e=1+e(ae-e) \in ur(R)$. It follows from [7, Theorem 4] that $eae \in ur(eRe)$.

 $(1) \Leftrightarrow (3)$ is proved in the same manner.

3. Stable range one

Lemma 3.1. Suppose that ax + b = 1 in R. If $a \in ur(R)$, then there exists $z \in R$ such that $x + zb \in U(R)$.

Proof. Since $a \in ur(R)$, there exist $e = e^2 \in R$ and $u \in U(R)$ such that a = eu. Hence eux(1-e) + b(1-e) = 1 - e, and then

$$a + b(1 - e)u = (1 - eux(1 - e))u = (1 + eux(1 - e))^{-1}u \in U(R).$$

By [4, Lemma 3.1], we can find $z \in R$ such that $x + zb \in U(R)$.

Theorem 3.2. $\Psi(R)$ has stable range one.

Proof. Given ax+b=1 with $a\in 1+\Psi(R)$ and $x,b\in R$, we can find $c_1,\ldots,c_m\in R$ such that $a=1+c_1+\cdots+c_m$ and each $c_i\in \Phi(R)$. Hence $(1+c_1)x+(c_2+\cdots+c_m)x+b=1$. As $1+c_1\in ur(R)$, by Lemma 3.1, we can find some $z_1\in R$ such that

$$x + z_1(c_2 + \dots + c_m)x + z_1b = u_1 \in U(R).$$

Hence

$$(1+z_1c_2)xu_1^{-1}+z_1(c_3+\cdots+c_m)xu_1^{-1}+z_1bu_1^{-1}=1.$$

As $1 + z_1c_2 \in ur(R)$, by Lemma 3.1 again, we have $z_2 \in R$ such that

$$xu_1^{-1} + z_2z_1(c_3 + \dots + c_m)xu_1^{-1} + z_2z_1bu_1^{-1} \in U(R),$$

and then $x + z_2 z_1 (c_3 + \cdots + c_m) x + z_2 z_1 b \in U(R)$. By iteration of this process, we have $z \in R$ such that $x + zb \in U(R)$. Therefore $\Psi(R)$ has stable range one.

A right R-module A is said to have the finite exchange property if for every right R-module M and any two decompositions $M = A' \oplus N = \bigoplus_{i \in I} A_i$, where $A'_R \cong A_R$ and the index set I is finite, then there exist submodules $A'_i \subseteq A_i$ such that $M = A' \oplus \big(\bigoplus_{i \in I} A'_i\big)$. A ring R is said to be an exchange ring provided that R has the finite exchange property as a right R-module. As is well known, a ring R is an exchange ring if and only if for any $x \in R$, there exists an idempotent $e \in R$ such that $e \in xR$ and $1 - e \in (1 - x)R$ (cf. [8, Proposition 28.6]).

Corollary 3.3. Let R be an exchange ring, and let $A \in M_n(\Psi(R))$ be regular. Then A admits a diagonal reduction.

Proof. By virtue of Theorem 3.2, $\Psi(R)$ has stable range one, and then so has $M_n(\Psi(R))$ from [7, Corollary 5.4]. Since $A \in M_n(\Psi(R))$ is regular, there exists $E = E^2 \in M_n(R)$ such that A(nR) = E(nR). Now we have a split exact sequence

$$0 \to \operatorname{Ker} E \to nR \xrightarrow{E} E(nR) \to 0$$

of right R-modules. Thus, $E(nR) \oplus \operatorname{Ker} E \cong nR$, and so E(nR) is a finitely generated projective right R-module. As $A \in M_n(\Psi(R))$, we see that $E \in$

 $M_n(\Psi(R))$; hence, $E(nR) = E(nR)\Psi(R)$. As in the proof of [8, Exercise 29.9], we can find idempotents $e_1, \ldots, e_n \in \Psi(R)$ such that

$$E(nR) \cong e_1R \oplus \cdots \oplus e_nR \cong \operatorname{diag}(e_1, \ldots, e_n)(nR)$$

as right R-modules. This implies that

$$E(^{n}R)\bigotimes_{R}R^{n}\cong \operatorname{diag}(e_{1},\ldots,e_{n})(^{n}R)\bigotimes_{R}R^{n},$$

where ${}^nR = \{ \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \mid r_1, \dots, r_n \in R \}$ and $R^n = \{ (r_1, \dots, r_n) \mid r_1, \dots, r_n \in R \}$. Obviously, ${}^nR \bigotimes_R R^n \cong M_n(R)$. Thus, we infer that $\varphi : AM_n(R) \cong \operatorname{diag}(e_1, \dots, e_n) M_n(R)$. One easily checks that

$$M_n(R)A = M_n(R)\varphi(A)$$
 and $\varphi(A)M_n(R) = \operatorname{diag}(e_1, \dots, e_n)M_n(R)$.

Write $A = X\varphi(A)$ and $\varphi(A) = YA$. Without loss of the generality, we may assume that $X, Y \in M_n(\Psi(R))$. Since

$$\big(X+(I_n-XY)\big)Y+(I_n-XY)(I_n-Y)=I_n \text{ and } X+(I_n-XY)\in M_n\big(\Psi(R)\big)$$

we have $Z \in M_n(R)$ such that

$$U := X + (I_n - XY)(I_n + (I_n - Y)Z)$$

= X + (I_n - XY) + (I_n - XY)(I_n - Y)Z \in \text{GL}_n(R).

Thus, it follows by [4, Lemma 3.1] that there exists $W \in M_n(R)$ such that $V := Y + W(I_n - XY) \in \operatorname{GL}_n(R)$. This implies that $VA = YA = \varphi(A)$. Likewise, we have $V' \in \operatorname{GL}_n(R)$ such that $\varphi(A)V' = \operatorname{diag}(e_1, \ldots, e_n)$. Therefore $VAV' = \operatorname{diag}(e_1, \ldots, e_n)$, as desired.

Corollary 3.4. Let R be an exchange ring, and let $(a_{ij}) \in M_n(R)$ be regular. If each $1 + a_{ij}r \in R$ is unit-regular for all $r \in R$, then (a_{ij}) admits a diagonal reduction.

Proof. In view of Lemma 2.1, $\Phi(R) = \{x \in R \mid 1+xt \in R \text{ is unit-regular for all } t \in R\}$. If each $1+a_{ij}r \in R$ is unit-regular for all $r \in R$, then $a_{ij} \in \Phi(R)$. Thus, $(a_{ij}) \in M_n(\Psi(R))$. According to Corollary 3.3, we complete the proof.

As is well known, a regular ring R has stable range one if and only if every element in R is unit-regular. The following result gives an analogue for ideals of a regular ring having stable range one.

Theorem 3.5. An ideal I of a regular ring R has stable range one if and only if for any $x \in I$, $r \in R$, 1 + xr is unit-regular.

Proof. Let I be an ideal of a regular ring R. Suppose that I has stable range one. For any $x \in I$, $r \in R$, $1 + xr \in 1 + I$. Write 1 + xr = (1 + xr)y(1 + xr) for

 $y \in R$. It follows from (1+xr)y + (1-(1+xr)y) = 1 that there exists $z \in R$ such that

$$u := 1 + xr + (1 - (1 + xr)y)z \in U(R).$$

Hence, 1 + xr = (1 + xr)yu. Therefore $1 + xr = (1 + xr)u^{-1}(1 + xr)$, and so $1 + xr \in R$ is unit-regular.

Conversely, assume that 1+xr is unit-regular for all $x \in I$, $r \in R$. Obviously, $\Phi(R) = \{x \in R \mid 1+xr \in ur(R) \text{ for all } r \in R\}$. Let $x,y \in \Phi(R), s,t \in R$. Then $sxt \in \Phi(R)$. Write 1+(x+y)t=(1+(x+y)t)c(1+(x+y)t). Then

$$(1 + (x + y)t)c + (1 - (1 + (x + y)t)c) = 1.$$

Clearly, $x+y\in \Psi(R)$. According to Theorem 3.2, $\Psi(R)$ has stable range one. As in the proof of [6, Theorem 1.8], we see that $v:=c+z\big(1-(1+(x+y)t)c\big)\in U(R)$ for $z\in R$. Therefore

$$1 + (x + y)t = (1 + (x + y)t)v(1 + (x + y)t).$$

That is, $1 + (x + y)t \in ur(R)$. Thus $x + y \in \Phi(R)$, and so $\Phi(R)$ is an ideal of R. We infer that $\Phi(R) = \Psi(R)$. Hence, $\Phi(R)$ has stable range one by Theorem 3.2. In fact, one easily checks that

$$\begin{array}{lcl} \Phi(R) & = & \sum\limits_{I \preceq R} \{I \mid I \text{ has stable range one}\} \\ & = & \{x \in R \mid RxR \text{ has stable range one}\}. \end{array}$$

By hypothesis, $I \subseteq \Phi(R)$, and therefore I has stable range one, as asserted. \square

Analogously, we deduce that an ideal I of a regular ring R has stable range one if and only if for any $x \in I, r \in R$, 1 + rx is unit-regular. Let R be a regular ring, and let $(a_{ij}) \in M_n(R)$. If $1 + a_{ij}r \in R$ is unit-regular for all $r \in R$, then (a_{ij}) is the product (sum) of an idempotent matrix and an invertible matrix over R. Set $I = \sum_{1 \le i,j \le n} Ra_{ij}R$. Then each $a_{ij} \in \Phi(R)$, and so $Ra_{ij}R \subseteq \Psi(R)$. This implies that I has stable range one by Theorem 3.5, and we are done.

4. Ψ-regularity

We say that $a \in R$ is Ψ -regular in case there exists some $u \in \Psi(R)$ such that a = aua. Let I be an ideal of a ring R. We say that I is Ψ -regular in case every element in I is Ψ -regular. A ring R is Ψ -regular provided that it is Ψ -regular as an ideal of itself.

Lemma 4.1. Let $a \in R$. Then $a \in R$ is Ψ -regular if and only if there exists some $x \in \Psi(R)$ such that a - axa is Ψ -regular.

Proof. Suppose that a-axa is Ψ -regular and $x \in \Psi(R)$. Then we have $u \in \Psi(R)$ such that a-axa=(a-axa)u(a-axa). Hence a=a(x+(1-xa)u(1-ax))a. As $x,u \in \Psi(R)$, we deduce that $x+(1-xa)u(1-ax) \in \Psi(R)$. So $a \in R$ is Ψ -regular. The converse is obvious.

Lemma 4.2. Let I be an ideal of a ring R, and let $e \in R$ be an idempotent. If I is Ψ -regular, then so is eIe.

Proof. Given any $a \in I$, we have $eae \in I$. Let I be Ψ -regular. Then we can find some $x \in \Psi(R)$ such that eae = (eae)x(eae). In addition, we have $x_1, \ldots, x_m \in \Phi(R)$ such that $x = x_1 + \cdots + x_m$. For any $s, t \in R$, we have $1 + (re)(ex_ie)(ese) \in ur(R)$. In view of Proposition 2.5, we get $e + (ere)(ex_ie)(ese) \in ur(eRe)$. This implies that each $ex_ie \in \Psi(eRe)$, and so $exe = ex_1e + \cdots + ex_me \in \Psi(eRe)$. As eae = (eae)(exe)(eae), we prove that $eae \in eIe$ is Ψ -regular, as required. \square

Theorem 4.3. Let I be an ideal of a ring R. If I is Ψ -regular, then so is $M_n(I)$.

Proof. Given any $\binom{a \ b}{c \ d} \in M_2(I)$, we have $b' \in \Psi(R)$ such that b = bb'b. Write $b' = h_1 + \cdots + h_m(m \in \mathbb{N})$, where each $h_i \in \Phi(R)$. Then $\binom{0 \ 0}{b' \ 0} = \sum_{i=1}^m \binom{0 \ 0}{h_i \ 0}$. For any $\binom{r_{11} \ r_{12}}{r_{21} \ r_{22}} \in M_2(R)$, we have

$$I_2 + \left(\begin{array}{cc} 0 & 0 \\ h_i & 0 \end{array}\right) \left(\begin{array}{cc} r_{11} & r_{12} \\ r_{21} & r_{22} \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ h_i r_{11} & 1 + h_i r_{12} \end{array}\right).$$

Clearly, we can find $U \in GL_2(R)$ such that $\begin{pmatrix} 1 & 0 \\ h_i r_{11} & 1 + h_i r_{12} \end{pmatrix} = U \begin{pmatrix} 1 & 0 \\ 0 & 1 + h_i r_{12} \end{pmatrix}$. So we see that $I_2 + \begin{pmatrix} 0 & 0 \\ h_i & 0 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} \in ur(M_2(R))$. As a result, $\begin{pmatrix} 0 & 0 \\ b' & 0 \end{pmatrix} \in \Psi(M_2(R))$. By virtue of Lemma 4.1, it suffices to prove that

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) - \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ b' & 0 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in M_2(I)$$

is Ψ -regular. That is, it suffices to prove that $\binom{a'}{c'} \binom{0}{d'} \in M_2(I)$ is Ψ -regular. Clearly, we have $a'', d'' \in \Psi(R)$ such that a' = a'a''a' and d' = d'd''d'. According Theorem 2.3, we see that $\binom{a''}{0} \binom{0}{d''} \in \Psi(M_2(I))$, and so it suffices to prove that

$$\left(\begin{array}{cc}a'&0\\c'&d'\end{array}\right)-\left(\begin{array}{cc}a'&0\\c'&d'\end{array}\right)\left(\begin{array}{cc}a''&0\\0&d''\end{array}\right)\left(\begin{array}{cc}a'&0\\c'&d'\end{array}\right)=\left(\begin{array}{cc}0&0\\c''&0\end{array}\right)\in M_2(I)$$

is Ψ -regular. Obviously, we have $u \in \Psi(R)$ such that c'' = c''uc''. Hence

$$\left(\begin{array}{cc} 0 & 0 \\ c'' & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ c'' & 0 \end{array}\right) \left(\begin{array}{cc} 0 & u \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ c'' & 0 \end{array}\right).$$

As $u \in \Psi(R)$, it follows from Theorem 2.3 that $\begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix} \in \Psi(M_2(R))$. We infer that $\begin{pmatrix} 0 & 0 \\ c'' & 0 \end{pmatrix}$ is Ψ -regular. Consequently, $M_2(I)$ is Ψ -regular. By induction, $M_{2^n}(I)$ is Ψ -regular. Choose $E = \operatorname{diag}(I_n, 0, \dots, 0)_{2^n \times 2^n}$. Therefore $M_n(I) \cong EM_{2^n}(I)E$ is Ψ -regular from Lemma 4.2.

Proposition 4.4. A ring R is Ψ -regular if and only it is unit-regular.

Proof. Suppose that R is unit-regular. Given any $a \in R$, there exists $x \in R$ such that a = axa. Clearly, $1 + rxs \in ur(R)$ for all $r, s \in R$. Hence $x \in \Psi(R)$. This infers that R is Ψ -regular.

Conversely, assume that R is Ψ -regular. Given any $a \in R$, there exists $x \in \Psi(R)$ such that a = axa. Obviously, (x + (1 - xa))a + (1 - xa)(1 - a) = 1. Since $x + (1 - xa) \in 1 + \Psi(R)$, by Theorem 3.2, there exists $y \in R$ such that $x + (1 - xa) + (1 - xa)(1 - a)y \in U(R)$. That is, $u := x + (1 - xa)(1 + (1 - a)y) \in U(R)$. Therefore a = axa = aua, as desired.

Corollary 4.5. If R is unit-regular, then so is $M_n(R)$ for all $n \in \mathbb{N}$.

Proof. According to Proposition 4.4 and Theorem 4.3, we complete the proof.

We note that Corollary 4.5 is a well-known result in the theory of unit-regular rings. However, the only known proof of it depends on cancelation of modules (cf. [5, Theorem 4.5]). Our treatment above provided the first element-wise proof of this result.

Acknowledgements. The author would like to thank the referee for his/her corrections, which lead to the new version of this paper.

References

- P. Ara, K. R. Goodearl, K. C. O'Meara, and E. Pardo, Diagonalization of matrices over regular rings, Linear Algebra Appl. 265 (1997), 147–163.
- [2] ______, Separative cancellation for projective modules over exchange rings, Israel J. Math. 105 (1998), 105–137.
- [3] B. Brown and N. H. Mccoy, The maximal regular ideal of a ring, Proc. Amer. Math. Soc. 1 (1950), 165–171.
- [4] K. R. Goodearl, Cancellation of low-rank vector bundles, Pacific J. Math. 113 (1984), no. 2, 289–302.
- [5] _____, von Neumann Regular Rings, Second edition. Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991.
- [6] T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Appl. 3 (2004), no. 3, 301–343.
- [7] T. Y. Lam and W. Murray, Unit regular elements in corner rings, Bull. Hong Kong Math. Soc. 1 (1997), no. 1, 61–65.
- [8] A. A. Tuganbaev, Rings Close to Regular, Mathematics and its Applications, 545. Kluwer Academic Publishers, Dordrecht, 2002.

DEPARTMENT OF MATHEMATICS

HANGZHOU NORMAL UNIVERSITY

Hangzhou 310036, P. R. China

E-mail address: huanyinchen@yahoo.cn