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CHARACTERIZATIONS OF DISTRIBUTIVE LATTICES AND
SEMICONTINUOUS LATTICES

Jiang Guanghao and Shi Weixue

Abstract. In this paper, the concept of maximal ideals relative to a fil-
ter on posets is introduced and examined. An intrinsic characterization
of distributive lattices is obtained. In addition, we also give a characteri-
zation of pseudo primes in semicontinuous lattices and a characterization
of semicontinuous lattices. Functions of semicontinuous lattices which
are order preserving and semicontinuous are studied. A new concept of
semiarithmetic lattices is introduced and examined.

1. Introduction and preliminaries

It should be noted that the study of distinctive features of some special
elements in continuous lattices, as well as in semicontinuous lattices, is of fun-
damental importance. And the study of irreducible elements and primes in
continuous lattices was begun in [3]. From then on, pseudo primes, weakly
primes and weakly irreducible elements were also investigated by many authors
(see [1] and [2]). The study of semiprime ideals was begun in [5] by Y. Ray.
The theory of semicontinuous lattices was first developed by D. Zhao in [7]. In
[6], X. Wu et al. defined the semi-Scott topology and semicontinuous functions.
In this paper, the concept of maximal ideals relative to a filter on posets is
introduced and examined. The existence of maximal ideals relative to a filter
is proved. As an application, we manage to give an intrinsic characterizations
of distributive lattices. Characterizations of pseudo primes in semicontinuous
lattices and semicontinuous lattices are also obtained. In addition, functions
of semicontinuous lattices which are order preserving and semicontinuous are
studied and some surprising results are obtained. We show that the strong
retract of a stable semicontinuous lattice is stable semicontinuous. Finally, a
new concept of lattices, semiarithmetic lattices, is introduced and examined.
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The following are some basic concepts needed in the sequel, other non-
explicitly stated elementary notions please refer to [2] and [7].

An ideal on a partially ordered set (in short, poset) L means a lower set
which is also directed, and a filter on a poset can be dually defined. For
a semilattice L, a proper ideal I of L is called a prime ideal if for any two
elements a, b of L, a∧ b ∈ I implies a ∈ I or b ∈ I. For a lattice L, an ideal I of
L is called a semiprime ideal if for any three elements a, b, c of L, the relations
a ∧ b ∈ I, a ∧ c ∈ I always imply a∧ (b∨ c) ∈ I. The set of semiprime ideals of
L is denoted by Rd(L). It is easy to see that every prime ideal is semiprime in
a lattice.

Recall that in a complete lattice L, for x, y ∈ L, we say that x ⇐ y, if for
any I ∈ Rd(L), y ≤ ∨

I always implies x ∈ I. If x ⇐ x, then x is called
a ⇐-compact element. For any x ∈ L, let ⇓ x = {y ∈ L : y ⇐ x} and
⇑ x = {y ∈ L : x⇐ y}. The set of ⇐-compact elements is denoted by SK(L).
It is easily seen that SK(L) is a sup-semilattice with a minimum element.
A complete lattice L is said to be semicontinuous lattice if for each x ∈ L,
x ≤ ∨ ⇓ x.

A subset U in a complete lattice L is said to be semi-Scott open if and only if
it satisfies (1) U =↑ U (the upper set of U) and (2) for each I ∈ Rd(L), I∩U 6= ∅
whenever

∨
I ∈ U . The set of semi-Scott open sets form a topology, called the

semi-Scott topology, denoted by σ⇐(L). Clearly, filters are particular upper
sets. We call those that are semi-Scott open in the sense just defined semi-
Scott open filters.

2. Maximal ideals relative to a filter

In [4], the concept of locally maximal ideals on posets was introduced: an
ideal M on a poset L is a locally maximal ideal if and only if there is an element
x ∈ L such that M is maximal among the ideals which do not contain x. We
generalize this to the concept of maximal ideals relative to a filter.

Definition 2.1. Let M be a proper ideal on a poset L. If there is a filter F ∈
Filt L such that M is maximal among the ideals which do not intersect F (i.e.,
for an ideal I on L, I ∩ F = ∅ and I ⊇M implies I = M), then we say M is a
maximal ideal relative to the filter F on poset L, or roughly, a maximal ideal
relative to a filter.

Remark 2.2. Let M be a proper ideal on a poset L and x ∈ L\M . Then it
is easy to see that M is a locally maximal ideal relative to x if and only if M
is a maximal ideal relative to filter ↑x. In particular, every locally maximal
ideal of L is a maximal ideal relative to a filter. Counterexamples can be found
(cf: [4, Example 2] or the dull poset of the lattice given by the figure above
Proposition I-3.3 in [2]) to show that maximal ideals relative to a filter may
not be locally maximal ideals.
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The following theorem shows the existence of maximal ideals relative to a
filter.

Theorem 2.3. Let L be a poset, I ∈Idl L, F ∈Filt L and I ∩ F = ∅. Then
there always exists a maximal ideal M relative to filter F such that M ∩F = ∅
and M ⊇ I.

Proof. Define A = {J : J is an ideal of L, J ∩ F = ∅ and J ⊇ I}. By the
assumption, we see I ∈ A 6= ∅ and A is a poset ordered by set inclusion ⊆. Let
B be a chain of A. Let K =

⋃
J∈B J . Claim that K ∈ A. It is clear that K is

a lower set. For x, y ∈ K, there are J1, J2 ∈ B such that x ∈ J1 and y ∈ J2.
Since B is a chain of A, J1 ⊆ J2 or J2 ⊆ J1. Suppose J1 ⊆ J2 without losing
generality. Then x, y ∈ J2 and there is z ∈ J2 ⊆ K such that x, y ≤ z. This
shows that K is directed and an ideal of L. By the definition of K and A, we
see that I ⊆ K and K ∩ F = ∅. Thus K ∈ A. By Zorn’s Lemma, there is a
maximal element M ∈ A. This M is indeed a maximal ideal relative to filter
F which is what we need. ¤

The following proposition gives characterization of maximal ideals relative
to a filter on a sup semilattice.

Proposition 2.4. Let L be a sup-semilattice. Let I ∈Idl L, F ∈Filt L and
I ∩ F = ∅. Then I is a maximal ideal relative to filter F if and only if for all
x ∈ L\I, there are y ∈ F and a ∈ I such that y ≤ x ∨ a.
Proof. Necessity: Let I be a maximal ideal relative to filter F . Then for all
x ∈ L\I, define I1 =

⋃{↓(x ∨ a) : a ∈ I}. It is easy to show that I1 is an
ideal and I1 ⊇ I 6= I1. By the maximality of I and I ∩ F = ∅, we have that
I1 ∩ F 6= ∅. Pick y ∈ I1 ∩ F . Thus there is a ∈ I such that y ≤ x ∨ a.

Sufficiency: By Theorem 2.3 and I ∩ F = ∅, there is a maximal ideal M
relative to filter F such that M ∩ F = ∅ and M ⊇ I. We show that M = I.
Suppose M 6= I. Then there is x ∈ M , x 6∈ I. By the assumption, there are
y ∈ F and a ∈ I such that y ≤ x ∨ a. Since I ⊆M and M is an ideal, a ∈M ,
x ∨ a ∈M and y ∈M . This contradicts to F ∩M = ∅, as desired. ¤

Maximal ideals relative to a filter have the typical feature given in the fol-
lowing theorem.

Theorem 2.5. Maximal ideals relative to a filter on a poset L are all irreducible
ideals.

Proof. Let L be a poset. Let M be a maximal ideal relative to a filter F and
M∩F = ∅. Suppose there are ideals I and J such that M = I∩J and I ⊇M 6=
I, J ⊇M 6= J , i.e., there are a ∈ I\M and b ∈ J\M . By Proposition 2.4, there
are u, v ∈ F, c, d ∈ M such that u ≤ a ∨ c, v ≤ b ∨ d, respectively. Since F is
a filter, a ∨ c, b ∨ d ∈ F and (a ∨ c) ∧ (b ∨ d) ∈ F . Noticing that c ∈ I, d ∈ J
and I, J are ideals, we see that a ∨ c ∈ I, b ∨ d ∈ J and (a ∨ c) ∧ (b ∨ d) ∈
I ∩ J = M . This shows that (a ∨ c) ∧ (b ∨ d) ∈ M ∩ F 6= ∅, a contradiction.
So, M is an irreducible ideal. ¤
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The following two corollaries now can be immediately follow from Theo-
rems 2.3 and 2.5:

Corollary 2.6. Let L be a lattice. Let I ∈Idl L, F ∈Filt L and I ∩ F = ∅.
Then there is an irreducible ideal J of L such that J ∩ F = ∅ and J ⊇ I.

Corollary 2.7. Maximal ideals relative to a filter on a distributive lattice are
prime ideals.

Proposition 2.8. Let M be a semiprime ideal on a lattice. If M is a maximal
ideal relative to a filter, then M is a prime ideal.

Proof. Let L be a lattice. Let M be a maximal ideal relative to filter F and
M ∩ F = ∅. Suppose there are a, b ∈ M such that a ∧ b ∈ M but a 6∈ M
and b 6∈ M . By Proposition 2.4, there are u, v ∈ F, c, d ∈ M such that
u ≤ a ∨ c, v ≤ b ∨ d, respectively. Since F is a filter, a ∨ c, b ∨ d ∈ F and
(a ∨ c) ∧ (b ∨ d) ∈ F . Noticing that c, d ∈ M and M is a semiprime ideal, we
have a∧b ∈M,a∧d ∈M and a∧(b∨d) ∈M ; and also c∧b ∈M, c∧d ∈M and
c∧(b∨d) ∈M . It follows from M is a semiprime ideal that (a∨c)∧(b∨d) ∈M .
This shows that (a ∨ c) ∧ (b ∨ d) ∈M ∩ F 6= ∅, a contradiction. Hence, M is a
prime ideal. ¤

This proposition shows that the similar result may be obtained in the non-
distributive case. An example is given by Figure 1 to show that maximal ideals
relative to a filter may be prime ideals in the non-distributive case, where
I = {a, b, c, d, 0} is a maximal ideal relative to filter L\I and a prime ideal but
L is a non-distributive lattice.
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Figure 1
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By Figure 1, we find that there exists a maximal ideal ↓ b relative to filter
↑ a but not a semiprime ideal in the non-distributive lattice L. By way of
contrast, an immediate proposition is obtained.

Proposition 2.9. If maximal ideals relative to a filter on a lattice L are all
semiprime ideals, then L is a distributive lattice.
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Proof. Let L be a lattice and a, b, c ∈ L. Let x = a∧(b∨c) and y = (a∧b)∨(a∧c).
It is trivial that x ≥ y. On the other hand, suppose that x 6≤ y. Then
↑ x⋂ ↓ y = ∅. By Theorem 2.3, there exists a maximal ideal M relative to
filter ↑ x such that M∩ ↑ x = ∅ and M ⊇↓ y. Thus x 6∈ M and y ∈ M . Since
M is a semiprime ideal, a ∧ b ∈ M,a ∧ c ∈ M and x = a ∧ (b ∨ c) ∈ M , a
contradiction. Hence x ≤ y, and thus L is distributive. ¤
Corollary 2.10. If maximal ideals on a lattice L are all semiprime ideals, then
L is a distributive lattice.

Corollaries 2.7, 2.10 and Proposition 2.9 give an intrinsic characterizations
of distributive lattices.

Theorem 2.11. Let L be a lattice. Then the following conditions are equiv-
alent:

(1) L is a distributive lattice;
(2) Maximal ideals relative to a filter on L are all prime ideals;
(3) Maximal ideals relative to a filter on L are all semiprime ideals;
(4) Maximal ideals on L are all semiprime ideals;
(5) Maximal ideals on L are all prime ideals.

3. Semicontinuous lattices and functions

In this section, we shall give a characterization of pseudo primes in the case
of semicontinuous lattices and a characterization of semicontinuous lattices,
respectively. In addition, semicontinuous functions are studied.

Recall that an element p of a poset L is called pseudo prime element if
p =

∨
P for some prime ideal P . All the pseudo prime elements of L is

denoted by ψPRIME L.
Now we give the following characterization of pseudo primes in semicontin-

uous lattices.

Lemma 3.1 ([2]). Let L be a distributive lattice, I an ideal and F a filter in L
with I ∩F = ∅. Then there is a prime ideal P in L with P ⊇ I and P ∩F = ∅.
Proposition 3.2. Let L be a complete lattice and 1 6= p ∈ L. Consider the
following statements:

(1) p is pseudo prime;
(2) In any finite collection x1, x2, . . . , xn ∈ L with x1 ∧ x2 ∧ · · · ∧ xn ⇐ p

there is one of the elements with xj ≤ p;
(3) The filter generated by L\↓p does not meet ⇓ p.

Then (1)⇒(2) and (2)⇔(3); if L is in addition distributive semicontinuous, all
three statements are equivalent.

Proof. Condition (2) says that no finite meet of elements from L\↓p is ever
⇐ p. Therefore (2) and (3) are always equivalent.

(1) implies (2): Let p be pseudo prime and suppose that x1 ∧ x2 ∧ · · · ∧ xn

⇐ p. Let P be a prime ideal with
∨
P = p. Since every prime ideal is
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semiprime, P ∈ Rd(L), thus x1 · · ·xn ∈ P . Since P is prime, there is one
j ∈ {1, 2, . . . , n} with xj ∈ P ⊆↓ p. That is, xj ≤ p.

(3) implies (1): Suppose that L is semicontinuous. Let F be the filter
generated by L\↓p. Then L\↓p ⊆ F and F ∩ ⇓ p = ∅. By Lemma 3.1, there
exists a prime ideal P with P ⊇ ⇓ p and P ∩ F = ∅. Since that L\↓p ⊆ F , we
have P ⊆ L\F ⊆ ↓p. Since L is semicontinuous, p ≤ ∨⇓ p ≤ ∨

P ≤ ∨ ↓p = p.
Thus p =

∨
P is pseudo prime. ¤

Lemma 3.3 ([6]). Let L be a complete lattice. Then for each x ∈ L,⇓ x ∈
Rd(L), and if L is semicontinuous lattice, ⇑ x ∈ σ⇐(L).

Lemma 3.4 ([6]). Let L be a complete lattice. Then L is a semicontinuous
lattice if and only if for each y, z ∈ L, y 6≤ z, there is x ∈ L with x ⇐ y and
x 6≤ z.

The following theorem gives a characterization of semicontinuous lattices.

Theorem 3.5. Let L be a complete lattice. Consider the following statements:
(1) L is a semicontinuous lattice;
(2) For each U ∈ σ⇐(L), U ⊆ ⋃{⇑ x : x ∈ U};
(3) For each x ∈ L, x =

∨{∧U : x ∈ U ∈ σ⇐(L)}.
Then (3)⇒(1)⇔(2); if for each y, z ∈ L, y ⇒ z implies y ≤ z, then all three
statements are equivalent.

Proof. (1) implies (2): For each U ∈ σ⇐(L), let y ∈ U , by Lemma 3.3, ⇓ y ∈
Rd(L). Since L is a semicontinuous lattice. Then y ≤ ∨ ⇓ y. Thus

∨ ⇓ y ∈ U .
Since U ∈ σ⇐(L), ⇓ y⋂

U 6= ∅. Then there is x ∈⇓ y ∩ U . Hence y ∈⇑ x, and
thus U ⊆ ⋃{⇑ x : x ∈ U}.

(2) implies (1): For each x ∈ L, let y =
∨ ⇓ x. Suppose that x 6≤ y. Then,

by Lemma 3.4, there is z ∈ L with z ⇐ x and z 6≤ y. Then z ∈⇓ x ≤ ∨ ⇓ x = y,
a contradiction. Hence x ≤ ∨ ⇓ x, and thus L is a semicontinuous lattice.

(3) implies (1): Suppose that for each x ∈ L, x ∈ U ∈ σ⇐(L), I ∈ Rd(L)
with x ≤ ∨

I. Thus
∨
I ∈ U . Since U ∈ σ⇐(L), I ∩ U 6= ∅. Then there

is y ∈ I ∩ U , and thus
∧
U ≤ y ∈ I. It is trivial that

∧
U ∈ I. By the

definition of ⇐,
∧
U ⇐ x, i.e., {∧U : x ∈ U ∈ σ⇐(L)} ⊆⇓ x. Therefore,

x =
∨{∧U : x ∈ U ∈ σ⇐(L)} ≤ ∨ ⇓ x.

(1) implies (3): Let y =
∨{∧U : x ∈ U ∈ σ⇐(L)}. It is trivial that y ≤ x.

We shall show that x ≤ y. Suppose that x 6≤ y. Then, by Lemma 3.4, there
is z ∈ L with z ⇐ x and z 6≤ y. Since x ∈⇑ z ∈ σ⇐(L), then y =

∨{∧U :
x ∈ U ∈ σ⇐(L)} ≥ ∧

(⇑ z). That ⇑ z ⊆↑ z follows immediately from our
hypothesis. Thus, y ≥ ∧

(⇑ z) ≥ ∧
(↑ z) = z, a contradiction. Therefore,

x =
∨{∧U : x ∈ U ∈ σ⇐(L)}. ¤

Let us now consider functions of semicontinuous lattices which are order
preserving and semicontinuous. Recall that a function f : L → L1 between
complete lattices is semicontinuous if and only if for each I ∈ Rd(L), f(

∨
I) =∨

f(I) and ↓ f(I) ∈ Rd(L1).
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Lemma 3.6. Let L1, L be complete lattices. If there exist order preserving
semicontinuous maps r : L → L1 and s : L1 → L such that r ◦ s = idL1 and
s(r(A)) ⊆ A for each A ⊆ L, then x ⇐ y if and only if s(x) ⇐S(L1) s(y) for
all x, y ∈ L1.

Proof. For each x, y ∈ L1, assume x⇐ y. Let I ∈ Rd(S(L1)) with s(y) ≤ ∨
I.

Then y = r(s(y)) ≤ r(
∨
I) by the monotonicity of r. Since r is semicontinuous,

we have y ≤ r(
∨
I) =

∨
r(I) =

∨ ↓ r(I) and ↓ r(I) ∈ Rd(L1). It follows from
x ⇐ y that x ∈↓ r(I). Hence s(x) ∈ s(↓ r(I)) ⊆↓ s(r(I)) ⊆↓ I = I, and thus
s(x) ⇐S(L1) s(y).

Conversely, suppose that s(x) ⇐S(L1) s(y). Let I1 ∈ Rd(L1) with y ≤ ∨
I1.

Then s(y) ≤ s(
∨
I1) =

∨
s(I1) and ↓ s(I1) ∈ Rd(S(L1)) by the monotonicity

and semicontinuity of s. Hence s(x) ∈↓ s(I) and thus x = r(s(x)) ∈ r(↓
s(I) ⊆↓ r(s(I)) =↓ I = I. So we have x⇐ y. ¤
Theorem 3.7. Let L be a complete lattice and L1 be a semicontinuous lattice.
If there exist order preserving semicontinuous maps r : L→ L1 and s : L1 → L
such that r ◦ s = idL1 and s(r(A)) ⊆ A for each A ⊆ L, then s(L1) is a
semicontinuous lattice.

Proof. Let ⇓s(L1) x = {y ∈ s(L1) : y ⇐ x in s(L1)}. It suffices to show that
for each x ∈ s(L1), x ≤

∨ ⇓s(L1) x. For each x ∈ s(L1), there is x1 ∈ L1

with x = s(x1) and x1 ≤
∨ ⇓ x1 by the semicontinuity of L1. Since s is order

preserving and semicontinuous, s(x1) ≤ s(
∨ ⇓ x1) =

∨
s(⇓ x1). It follows from

Lemma 3.6 that s(⇓ x1) ⊆⇓s(L1) s(x1). Hence x = s(x1) ≤
∨ ⇓s(L1) s(x1) =∨ ⇓s(L1) x, and thus s(L1) is semicontinuous. ¤

Recall that ⇐ is multiplicative if and only if for all a, b, x, y ∈ L with a⇐ x
and b⇐ y one can deduce that a∧ b⇐ x∧ y. A semicontinuous lattice having
multiplicative ⇐ is called a stable continuous semilattice.

The final part of this section is devoted to the strong retract of a stable
semicontinuous lattice. Recall that a complete lattice L1 is a retract of a
complete lattice L if there exist order-preserving semicontinuous functions r :
L → L1 and s : L1 → L such that r ◦ s = idL1 . In [6], X. H. Wu, et al.
proved that the retract of a semicontinuous lattice is semicontinuous. We
shall show that the strong retract of a stable semicontinuous lattice is stable
semicontinuous.

Definition 3.8. A complete lattice L1 is called a strong retract of a complete
lattice L if there exist an order preserving semicontinuous map r : L→ L1 and
a nonempty-finite-infs-preserving semicontinuous map s : L1 → L such that
r ◦ s = idL1 and ∀A ⊆ L, s(r(A)) ⊆ A.

Clearly, any strong retract of a complete lattice is retract with the fact that
nonempty finite infs-preserving functions are all order-preserving.

Theorem 3.9. The strong retract of a stable semicontinuous lattice is stable
semicontinuous.
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Proof. Suppose that L1 is the strong retract of a stable semicontinuous lattice
L. By Definition 3.8, there exist an order preserving semicontinuous map r :
L→ L1 and a nonempty-finite-infs-preserving semicontinuous map s : L1 → L
such that r◦s = idL1 . For each x ∈ L1, x = r◦s(x), s(x) ∈ L. Let x1, x2, y1, y2 ∈
L1 with x1 ⇐ y1 and x2 ⇐ y2. To complete the proof, by the retract of a
semicontinuous lattice is semicontinuous, we must show that x1∧x2 ⇐ y1∧y2.
By Lemma 3.6, We have s(x1) ⇐S(L1) s(y1) and s(x2) ⇐S(L1) s(y2). Since
⇐ is multiplicative in L, s(x1) ∧ s(x2) ⇐S(L1) s(y1) ∧ s(y2). Since s preserves
nonempty finite infs, we have s(x1 ∧ x2) ⇐S(L1) s(y1 ∧ y2). By Lemma 3.6,
x1 ∧ x2 ⇐ y1 ∧ y2, and thus L1 is also stable. ¤

4. Semialgebraic lattices

The theory of semicontinuous lattices was first developed in [7]. In the paper,
D. Zhao introduced and studied a new type of lattices, semicontinuous lattices,
by using semiprime ideals. In this section, the concept of a new type of lattices,
semiarithmetic lattices, is introduced and examined.

Recall that a complete lattice L is called semialgebraic if and only if it
satisfies the axiom of ⇐-compact approximation

(∀x ∈ L) x ≤
∨

(↓ x ∩ SK(L)) and ↓ x ∩ SK(L) ∈ Rd(L).

Lemma 4.1 ([7]). In a complete lattice L, ∀u, x, y, z ∈ L, u ≤ x ⇐ y ≤ z
implies u⇐ z.

Proposition 4.2. In a complete lattice L, the following statements are equiv-
alent:

(1) L is semialgebraic;
(2) L is semicontinuous, and x ⇐ y if and only if there is k ∈ SK(L) with

x ≤ k ≤ y.

Proof. (1) implies (2): Assume (1) and x, y ∈ L. If x⇐ y, then, since y ≤ ∨
D

with the semiprime ideal D =↓ y ∩ SK(L) by (1), x ∈ D =↓ D. Thus there is
k ∈↓ y ∩ SK(L) with x ≤ k. Hence x ≤ k ≤ y with k ∈ SK(L). Conversely, if
there is a ⇐-compact element k with x ≤ k ≤ y, then x ≤ k ⇐ k ≤ y, whence
x ⇐ y by Lemma 4.1. We claim D ⊆⇓ y for each y ∈ L. Because, for each
u ∈ D =↓ D, there is k ∈↓ y ∩ SK(L) with u ≤ k. Hence u ≤ k ≤ y with
k ∈ SK(L). Therefore u⇐ y by Lemma 4.1, i.e., u ∈⇓ y. The semicontinuity
of L now follows directly from the fact that D ⊆⇓ y and y ≤ ∨

D.
(2) implies (1): Assume (2) and let y ∈ L. Then y ≤ ∨ ⇓ y and ⇓ y ∈ Rd(L)

by Lemma 3.3. We claim that ⇓ y = D. From above D ⊆⇓ y. On the other
hand, for each x ∈⇓ y, x ⇐ y. Then there is a ⇐-compact element k with
x ≤ k ≤ y by (2). Since that k ∈↓ y ∩ SK(L) = D, we have x ∈ D. Hence
⇓ y ⊆ D, and D =⇓ y ∈ Rd(L). Therefore, L is semialgebraic. ¤

By the proof of Proposition 4.2 we immediately obtain:

Corollary 4.3. In a semialgebraic lattice L, ∀x ∈ L, ↓ x ∩ SK(L) =⇓ x.
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Definition 4.4. A complete lattice L is called a semiarithmetic lattice if and
only if it is a semialgebraic lattice and if SK(L) is a subsemilattice of L, i.e., if
x∧y ∈ SK(L) for all x, y ∈ SK(L). A semiarithmetic lattice is a semialgebraic
lattice in which the set of ⇐-compact elements is a subsemilattice.

Proposition 4.5. For a semialgebraic lattice L, the following conditions are
equivalent:

(1) L is semiarithmetic;
(2) the relation ⇐ is multiplicative;
(3) SK(L) is a semilattice.

Proof. (1) implies (2): Let a ⇐ x and b ⇐ y. Then there are p, k ∈ SK(L)
with a ≤ p ≤ x and b ≤ k ≤ y by Proposition 4.2. Thus a ∧ b ≤ p ∧ k ≤ x ∧ y,
and since p ∧ k ∈ SK(L) by (1), we have a ∧ b⇐ x ∧ y by Proposition 4.2.

(2) implies (1): If a, b ∈ SK(L), then a⇐ a and b⇐ b, hence a ∧ b⇐ a ∧ b
by (2). Thus a ∧ b ∈ SK(L). Therefore, L is semiarithmetic.

(1) implies (3): It is trivial.
(3) implies (1): Let a, b ∈ SK(L), c = a∧SK(L) b. Then c ≤ a∧ b(= a∧L b).

But if X =↓ (a ∧ b) ∩ SK(L), then a ∧ b ≤ ∨
LX, c ≤

∨
SK(L)X, since L

is semialgebraic. Noticing that c = a ∧SK(L) b ∈ SK(L) by (3), we have
c =

∨
SK(L)X. Thus a∧b ≤ ∨

LX ≤ ∨
SK(L)X = c, whence a∧b = c ∈ SK(L).

Hence, L is semiarithmetic. ¤

Recall that an element p in a semilattice L is said to be prime if and only if
for all x, y ∈ L, x ∧ y ≤ p implies x ≤ p or y ≤ p. The set of all primes of L is
denoted by PRIME L.

Lemma 4.6 ([7]). Let L be a semicontinuous lattice. Then PRIME L =
ψPRIME L if and only if ⇐ is multiplicative.

Lemma 4.7 ([7]). Let L be a semicontinuous lattice. If ⇐ is multiplicative,
then the following statements are equivalent for an element p ∈ L :

(1) p is a pseudo prime element;
(2) If a ∧ b⇐ p, then a ≤ p or b ≤ p for all a, b ∈ L;
(3) p is a prime.

From Lemmas 4.7, 4.6 and Proposition 4.5 we immediately obtain:

Corollary 4.8. Every pseudo prime in a semiarithmetic lattice is prime. Con-
versely, if in a semialgebraic lattice we have PRIME L = ψPRIME L, then L
is semiarithmetic.

Here we give the following characterization of ⇐-compact elements.

Proposition 4.9. For an element k in a complete lattice L, the following
statements are equivalent:

(1) ↑ k is a semi-Scott open filter;
(2) k is ⇐-compact.
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Proof. (1) implies (2): If I ∈ Rd(L) such that k ≤ ∨
I, then

∨
I ∈↑ k. By (1),

there is d ∈ I such that d ∈↑ k, thus k ≤ d. Since I is a lower set, we have
k ∈ I. Hence, k ⇐ k.

(2) implies (1): If u ∈↑ k and k ⇐ k, then k ⇐ u (by Lemma 4.1), that is
u ∈⇑ k. Thus ↑ k ⊆⇑ k. If I ∈ Rd(L) such that

∨
I ∈↑ k, then

∨
I ∈⇑ k.

Since k ⇐ ∨
I, we have k ∈ I. Thus I

⋂ ↑ k 6= ∅. Hence ↑ k is a semi-Scott
open filter. ¤

Two parallel results to Theorem 3.7 for semialgebraic lattices and semiarith-
metic lattices read as follows.

Theorem 4.10. Let L be a complete lattice and L1 be a semialgebraic lattice.
If there exist order preserving semicontinuous maps r : L→ L1 and s : L1 → L
such that r ◦ s = idL1 and s(r(A)) ⊆ A for each A ⊆ L, then s(L1) is a
semialgebraic lattice.

Proof. By Theorem 3.7 and Proposition 4.2, it suffices to show that for all
x, y ∈ s(L1), if x ⇐S(L1) y, then there is k ∈ SK(s(L1)) with x ≤ k ≤ y.
Let x1, y1 ∈ L1 such that x = s(x1) and y = s(y1). Then s(x1) ⇐S(L1) s(y1),
by Lemma 3.6, x1 ⇐ y1. Since L1 is semialgebraic, by Proposition 4.2, there
is k1 ∈ SK(L1) with x1 ≤ k1 ≤ y1. Hence s(x1) ≤ s(k1) ≤ s(y1) by the
monotonicity of s and s(k1) ∈ SK(s(L1)) by Lemma 3.6. Thus k = s(k1) as
was desired. ¤

From Proposition 4.5 and Theorem 4.10 we immediately obtain:

Theorem 4.11. Let L be a complete lattice and L1 be a semiarithmetic lat-
tice. If there exist an order preserving semicontinuous map r : L → L1 and
a nonempty-finite-infs-preserving semicontinuous map s : L1 → L such that
r ◦ s = idL1 and s(r(A)) ⊆ A for each A ⊆ L, then s(L1) is a semiarithmetic
lattice.

Proof. By Proposition 4.5 and Theorem 4.10, it suffices to show that⇐ is multi-
plicative in s(L1). Let s1, s2, t1, t2 ∈ s(L1) with s1 ⇐S(L1) t1 and s2 ⇐S(L1) t2.
Then there are x1, x2, y1, y2 ∈ L with s1 = s(x1), s2 = s(x2) and t1 =
s(y1), t2 = s(y2), i.e., s(x1) ⇐S(L1) s(y1) and s(x2) ⇐S(L1) s(y2). By Lemma
3.6, x1 ⇐ y1 and x2 ⇐ y2. Since L1 is semiarithmetic, by Proposition 4.5,
⇐ is multiplicative in L1. Thus x1 ∧ x2 ⇐ y1 ∧ y2. Applying Lemma 3.6,
s(x1 ∧ x2) ⇐S(L1) s(y1 ∧ y2). For s is nonempty-finite-infs-preserving, we have
s(x1)∧s(x2) ⇐S(L1) s(y1)∧s(y2). Hence s1∧s2 ⇐S(L1) t1∧ t2, and thus s(L1)
is a semiarithmetic lattice. ¤
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