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UNIVERSAL HYPERDYNAMICAL SYSTEMS

A. Dehghan Nezhad and B. Davvaz

Abstract. In this paper, the theory of n-ary hypergroups and some ap-
plications of hyperalgebras (Fredholm-Voltra integral, copula) are stud-
ied. We define some new concepts of topological hyperdynamical systems,
universal hyperdynamical systems and immersed universal hyperalgebra.
Also, we present some results in this respect.

1. Introduction

Hyperstructure theory was born in 1934 when Marty defined hypergroups
as a generalization of groups. This theory has been studied in the following
decades and nowadays by many mathematicians. Hypergroup theory both
extends some well-known group results and introduced new topics leading thus
to a wide variety of applications, as well as to a broadening of the investigation
fields. There are applications to the following subjects: geometry, hypergraphs,
binary relations, lattices, fuzzy sets and rough sets, automata, cryptography,
combinatorics, codes, artificial intelligence, and probabilistic. A comprehensive
review of the theory of hyperstructures appears in [3, 4, 20].
n-ary generalizations of algebraic structures is the most natural way for fur-

ther development and deeper understanding of their fundamental properties.
Ameri and Zahedi in [2], Davvaz in [6] and Pelea and Purdea in [17] stud-
ied algebraic hypersystems. The notion of n-hypergroup was first introduced
by Davvaz and Vougiouklis as a generalization of n-ary group [7], and stud-
ied mainly by Leoreanu-Fotea and Davvaz [12, 13, 14]. Leoreanu-Fotea and
Davvaz introduced and studied the notion of a partial n-hypergroupoid, asso-
ciated with a binary relation. Some important results, concerning Rosenberg
partial hypergroupoids, induced by relations, are generalized to the case of
n-hypergroupoids

In [11], Ilookashooly and Molaei studied the notion of immersed hypergroup
and they considered hypergroups which are also smooth manifolds and their
join operators create immersed submanifolds.
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In [8], Hos̆ková generalized the concept of topological groupoid to topological
hypergroupoid. Some results of this type can be found in [1].

2. Basic definitions

In this section, we give a brief introduction of universal hyperalgebras, n-
ary hypergroups and homomorphisms between them. First, we recall some
notation of ordinary universal algebras.

Definition 2.1. Let nt be a non-negative integer and H be a non-empty set.
We denote by Hnt the Cartesian product H × · · · × H, where H appears nt
times. An element of Hn will be denoted by (x1, . . . , xn), where xi ∈ H for
any i with 1 ≤ i ≤ n. An nt-ary operation on H is a function λt from Hnt to
H, where Hnt is the set of nt-tuples of elements of H for nt > 0, and H0 is a
singleton set. If λt is an nt-ary operation on H, then nt is called the arity (or
rank) of λt.

A language (or type) of an algebra is a set L such that a non-negative integer
nt and a function symbol λt is assigned to each member t of L. If L is a language
of algebras, then a universal algebraH of type L is an ordered pair (H,λ), where
H is a non-empty set and λ = (λtH : t ∈ L) is a family of operations on H,
where λt is an nt-ary operation on H.

If there is no confusion, we denote λtH by λt and use the same notation λ
for every algebra H.

Definition 2.2. Let H and H′ be algebras of the same type L. A function
f : H → H ′ is called a homomorphism if for every t ∈ L and all h1, . . . , hnt ∈ H,

f(λt(h1, . . . , hnt)) = λt(f(h1), . . . , f(hnt)).

Definition 2.3. Let θ be an equivalence relation on a set H. Then θ is said
to be a congruence of an algebra H if for each t ∈ L,

λt(h1, . . . , hnt)θλt(h
′
1, . . . , h

′
nt

),

whenever h1, . . . , hnt , h
′
1, . . . , h

′
nt
∈ H satisfy hiθh′i for i = 1, . . . , nt.

Now, we define the “hyper” counter parts of the above notions.

Let H be a non-empty set and f be a mapping f : H ×H → P∗(H), where
P∗(H) is the set of all non-empty subsets of H. Then f is called a binary
hyperoperation on H. In general, a mapping f : Hn → P∗(H) is called an
n-ary hyperoperation and n is called the order of hyperoperation.

Let f be an n-ary hyperoperation on H and A1, . . . , An subsets of H. We de-
fine f(A1, . . . , An) = ∪{f(x1, . . . , xn) | xi ∈ Ai, i = 1, . . . , n}. We shall use the
following abbreviated notation: the sequence xi, xi+1, . . . , xj will be denoted
by xji . For j < i, xji is the empty set. In this convention f(x1, . . . , xi, yi+1, . . . ,

yj , zj+1, . . . , zn) will be written as f(xi1, y
j
i+1, z

n
j+1).



UNIVERSAL HYPERDYNAMICAL SYSTEMS 515

Definition 2.4. A non-empty set H with an n-ary hyperoperation f : Hn →
P∗(H) will be called an n-ary hypergroupoid and will be denoted by (H, f).
An n-ary hypergroupoid (H, f) will be called an n-ary semihypergroup if and
only if the following associative axiom holds:

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

for every i, j ∈ {1, 2, . . . , n} and x1, x2, . . . , x2n−1 ∈ H.

If for all (a1, a2, . . . , an) ∈ Hn, the set f(a1, a2, . . . , an) is a singleton, then f
is called an n-ary operation and (H, f) is called an n-ary groupoid (resp. n-ary
semigroup).

An n-ary semihypergroup (H, f) in which the equation

(∗) b ∈ f(ai−1
1 , xi, a

n
i+1)

has a solution xi ∈ H for every a1, . . . , ai−1, ai+1, . . . , an, b ∈ H and 1 ≤ i ≤ n,
is called an n-ary hypergroup. In the above definition, if f is an n-ary operation,
then the equation (∗) is as follows:

(∗∗) b = f(ai−1
1 , xi, a

n
i+1).

In this case (H, f) is an n-ary group.
Let nt be a nonnegative integer. Then an nt-ary hyperoperation on a

nonempty set H is a function λt : Hnt → P∗(H), where P∗(H) is the set
of all non-empty subsets of H.

A universal hyperalgebra (or simply, a hyperalgebra) H of type L is a pair
(H, (λt)t∈L), where λt is a hyperoperation on H for each t ∈ L.

By a quasi-ordered semigroup we mean a triple (G, ◦,≤), where (G, ◦) is a
semigroup and binary relation ≤ is a quasi-ordering (i.e., it is reflexive and
transitive) on the set G such that for any triple x, y, z ∈ G with the property
x ≤ y also x ◦ z ≤ y ◦ z and z ◦ x ≤ z ◦ y hold. By an ordered (semi)group
we mean (as usual) a triple (G, ◦,≤), where (G, ◦) is a (semi)group and ≤ is
a reflexive, antisymmetrical and transitive binary relation on G such that for
any triple x, y, z ∈ G with the property x ≤ y also x◦ z ≤ y ◦ z and z ◦x ≤ z ◦y
hold.

The following proposition is a generalization of Lemma 1 in [9].

Proposition 2.5. Let (H, ◦,≤) be a quasi-ordered semigroup. Define an n-ary
hyperoperation f : Hn → P∗(H) by f(h1, . . . , hn) = {h ∈ H : (h1◦· · ·◦hn) ≤ h}
for all elements h1, . . . , hn ∈ H. Then

(1) (H, f) is an n-ary semihypergroup which is commutative if the semigroup
(H, ◦) is commutative.

(2) If (H, f) is the above defined n-ary semihypergroup, then (H, f) is an
n-ary hypergroup if and only if for any elements h1, . . . , hn, b ∈ H there exist
elements c1, . . . , cn ∈ H with a property h1 ◦ · · · ◦ hi−1 ◦ ci ◦ hi+1 ◦ · · · ◦ hn ≤ b
for every 1 ≤ i ≤ n.
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Proof. (1) In order to verify the associativity law, suppose that a2n−1
1 ∈ H.

Then

f(ai−1
1 , f(an+i−1

i ), a2n−1
n+i )

=
⋃

x∈f(an+i−1
i )

f(ai−1
1 , x, a2n−1

n+i )

=
⋃

ai◦···◦an+i−1≤x
{y : a1 ◦ · · · ◦ ai−1 ◦ x ◦ an+i ◦ · · · ◦ a2n−1 ≤ y}

= {y : a1 ◦ · · · ◦ a2n−1 ≤ y}
= {y : a1 ◦ . . . aj−1 ◦ (aj ◦ · · · ◦ an+j−1) ◦ · · · ◦ a2n−1 ≤ y}
=

⋃

aj◦···◦an+j−1≤z
{y : a1 ◦ · · · ◦ aj−1 ◦ z ◦ an+j ◦ · · · ◦ a2n−1 ≤ y}

=
⋃

x∈f(an+j−1
j )

f(aj−1
1 , x, a2n−1

n+j )f(aj−1
1 , f(an+j−1

j ), a2n−1
n+j ).

Therefore (H, f) is an n-ary semihypergroup. Evidently, if the semigroup (H, ◦)
is commutative, then the n-ary semihypergroup (H, f) is also commutative.

(2) It is clear. ¤

Corollary 2.6. Let (H, ◦,≤) be an ordered group. Define an n-ary hyperop-
eration f : Hn → P∗(H) by f(h1, . . . , hn) = {h ∈ H : (h1 ◦ · · · ◦ hn) ≤ h}
for all elements h1, . . . , hn ∈ H. Then (H, f) is an n-ary hypergroup which is
commutative if the group (H, ·) is commutative.

Proof. By Proposition 2.5(1), (H, f) is an n-ary semihypergroup. Suppose that
a1, . . . , an, b are arbitrary elements of H. We denote

xi = a−1
i−1 ◦ · · · ◦ a−1

1 ◦ b ◦ a−1
n ◦ · · · ◦ a−1

n+i.

Then b = a1◦· · ·◦ai−1◦xi◦an+i◦· · ·◦an. Thus a1◦· · ·◦ai−1◦xi◦an+i◦· · ·◦an ≤ b,
and so the equation b ∈ f(ai−1

1 , xi, a
n
n+i) has a solution xi. ¤

3. Some examples of hyperalgebra

3.1. Constructions of n-ary hyperoperators on ordered groups

In this paragraph, we give a generalization for [9]. A Fredholm-Voltra inte-
gral operator can be written as the following:

F (λ, µ,K,L, f) : C(J × [0,+∞)) −→ C(J × [0,+∞))

ϕ(x, t) 7→ F (λ, µ,K(x, t, s), L(x, t, τ), f(x, t))(ϕ(x, t))

=λ
∫ b

a

K(x, t, s)ϕ(s, t)ds+ µ

∫ t

0

L(x, t, τ)ϕ(x, τ)dτ + f(x, t),

where J = (a, b), K(x, t, s) ∈ C(J × [0,+∞)× J), L(x, t, τ) ∈ C(J × [0,+∞),
[0, t]), (kernels), are a real or complex valued functions (mostly positive real
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functions), f(x, t) ∈ C(J,×[0,+∞)), λ, µ are two real numerical parameters.
Usually there are considered Fredholm-Voltra integral equations with a non-
degenerate Lebesgue square integrable kernels K(x, t, s) and L(x, t, τ). In this
contribution we will construct an n-ary hypergroup on the set of operators
F (λ, µ, K(x, t, s), L(x, t, τ), f(x, t)) with continuous functions K,L, f and two
nonzero parameters λ, µ. For our purposes we will consider continuous positive
functions only, in order to avoid some obstacles with integrability of functions
in the form of fractions.

Denote FV = {F (λ, µ,K(x, t, s), L(x, t, τ), f(x, t)) : λ, µ ∈ R, λ2 + µ2 6=
0,K(x, t, s) ∈ C(J × [0,+∞) × J), L(x, t, τ) ∈ C(J × [0,+∞), [0, t]), f(x, t) ∈
C(J,×[0,+∞))}.

For any pairs of operators F (λ1, µ1,K1, L1, f1), F (λ2, µ2,K2, L2, f2) in FV
let us define

F (λ1, µ1,K1, L1, f1) ◦ F (λ2, µ2,K2, L2, f2)

= F (λ1λ2, µ1µ2,K2f1 +K1, L2f1 + L1, f1f2)

and F (λ1, µ1,K1, L1, f1) ≤ F (λ2, µ2,K2, L2, f2) if and only if λ1 = λ2, µ1 =
µ2, f1(x, t) ≡ f2(x, t) for any (x, t) ∈ J × [0,∞),K1(x, t, s) ≤ K2(x, t, s) for
any (x, t, s) ∈ (J × [0,+∞) × J), L1(x, t, τ) ≤ L2(x, t, τ) for any (x, t, τ) ∈
(J × [0,+∞), [0, t]).

Proposition 3.1.1. (FV, ◦,≤) is a noncommutative ordered group.

Proof. Suppose that F (λi, µi,Ki, Li, fi) ∈ FV, i = 1, 2, 3. Then

F (λ1, µ1,K1, L1, f1) ◦ (F (λ2, µ2,K2, L2, f2) ◦ F (λ3, µ3,K3, L3, f3))

= F (λ1, µ1,K1, L1, f1) ◦ (F (λ2λ3, µ2µ3,K3f2 +K2, L3f2 + L2, f2f3)

= F (λ1λ2λ3, µ1µ2µ3,K3f2f1 +K2f1 +K1, L3f2f1 + L2f1 + L1, f1f2f3)

= F (λ1λ2, µ1µ2,K2f1 +K1, L2f1 + L1, f1f2) ◦ (F (λ3, µ3,K3, L3, f3))

= (F (λ1, µ1,K1, L1, f1) ◦ F (λ2, µ2,K2, L2, f2)) ◦ F (λ3, µ3,K3, L3, f3).

Thus the binary operation “ ◦ ” is associative. Further, any operator F (λ, µ,
K, L, f) ∈ FV and operator F (1, 1, 0, 0, 1) satisfy an equality

F (λ, µ,K,L, f) ◦ F (1, 1, 0, 0, 1) = F (λ, µ,K,L, f)

= F (1, 1, 0, 0, 1) ◦ F (λ, µ,K,L, f).

Thus the operator F (1, 1, 0, 0, 1) is unit of the semigroup (FV, ◦).
Now, since for any operator F (λ, µ,K,L, f) ∈ FV there holds λ2 + µ2 6=

0 and f(x, t) > 0 for all (x, t) ∈ J × [0,+∞). We have that the operator
F ( 1

λ ,
1
µ ,

−K
f , −Lf ,

1
f ) is well defined and belong to FV . Then,

F

(
1
λ
,
1
µ
,
−K
f
,
−L
f
,
1
f

)
◦ F (λ, µ,K,L, f) = F (1, 1, 0, 0, 1),

F (λ, µ,K,L, f) ◦ F
(

1
λ
,
1
µ
,
−K
f
,
−L
f
,
1
f

)
= F (1, 1, 0, 0, 1),
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which means that F−1(λ, µ,K,L, f) = F ( 1
λ ,

1
µ ,

−K
f , −Lf ,

1
f ), hence (FV, ◦) is a

group. Evidently the binary operation “◦” is non-commutative on “FV ”. From
the definition of the relation “≤” it follows immediately that this relation is
reflexive, anti symmetrical and transitive on FV . Hence the pair (FV,≤) is an
ordered set. It remain that to verify the compatibility of the ordering “≤” on
FV with the binary operation “◦”. Suppose that F (λ1, µ1, K1, L1, f1), F (λ2,
µ2, K2, L2, f2) ∈ FV are integral operators satisfying

F (λ1, µ1,K1, L1, f1) ≤ F (λ2, µ2,K2, L2, f2),

and F (λ, µ,K,L, f) ∈ FV is an arbitrary operator. Then

0 < f1(x, t) ≡ f2(x, t),
0 6= λ1 = λ2, 0 6= µ1 = µ2,

K1(x, t, s) ≤ K2(x, t, s),

L1(x, t, τ) ≤ L2(x, t, τ)

for any x ∈ J, t ∈ [0,∞), s ∈ J, τ ∈ [0, t]. Hence

λλ1 = λλ2, f(x, t)f1(x, t) ≡ f(x, t)f2(x, t),

K1(x, t, s)f(x, t) +K(x, t, s) ≤ K2(x, t, s)f(x, t) +K(x, t, s),

L(x, t, s)f1(x, t) +K1(x, t, s) ≤ K(x, t, s)f2(x, t) +K2(x, t, s),

L1(x, t, τ)f(x, t) + L(x, t, τ) ≤ L2(x, t, τ)f(x, t) +K(x, t, τ),

L(x, t, τ)f1(x, t) +K1(x, t, τ) ≤ L(x, t, τ)f2(x, t) + L2(x, t, τ),

and so

F (λ, µ,K,L, f) ◦ F (λ1, µ1,K1, L1, f1) = F (λλ1, µ1µ2,K1f +K,L1f + L, ff1)

≤ F (λλ2, µµ2,K2f +K,L2f + L, ff2)

= F (λ, µ,K,L, f) ◦ F (λ2, µ2,K2, L2, f2)

and

F (λ1, µ1,K1, L1, f1) ◦ F (λ, µ,K,L, f)

= F (λ1λ, µ1µ,Kf1 +K1, Lf1 + L1, f1f)

≤ F (λ2λ1, µ2µ,Kf2 +K2, Lf2 + L2, f2f)

= F (λ2, µ2,K2, L2, f2) ◦ F (λ, µ,K,L, f).

Consequently, (FV, ◦,≤) is a noncommutative ordered group. ¤

3.2. About the definition of copula

The mathematical concept of copulas has been known in principle for about
half a century. As early as 1959, Sklar published his work now referred to
in the literature as Sklars theorem which is of central significance when one
is applying copulas to statistical investigations of the relation between mar-
ginal distributions and their dependence structure. However, it took about
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four decades before copulas became more widely used by the mathematical
community. Since the late 1990s, copulas have been rediscovered, becoming
more and more attractive in statistics. Consequently, the amount of literature
in this area has also increased. A good example of this is Nelsens excellent text
An Introduction to Copulas, which was first published in 1999 and has since
been reissued in a revised format. Today, the book is firmly established as the
standard reference in the area of copulas (see [16]).

During a long time statisticians have been interested on the relationship be-
tween a multivariate distribution function and its lower dimensional margins.
M. Frchet, and G. Dall’Aglio did some interesting works about this matter
in the fifties, studying the bivariate and trivariate distribution functions with
given univariate margins. The answer to this problem for the univariate mar-
gins case was given by A. Sklar in 1959 creating a new class of functions which
he called copulas. These new functions are restrictions to [0, 1]2 of bivari-
ate distribution functions whose margins are uniform in [0, 1]. In short, Sklar
showed that if H is a bivariate distribution function whit margins F (x) and
G(y), then there exists a copula C such that H(x, y) = C(F (x), G(y)). The
recent book by R. B. Nelsen (see [16]) is an important monograph about cop-
ulas.

Definition 3.2.1 (Copula). A d-dimensional copula is a function C : [0, 1]d →
[0, 1] and having the following properties:

(i) let x ∈ [0, 1]d, thus x = (x1, . . . , xd), where xj ∈ [0, 1], ∀j ∈ {1, . . . , d},
then C(x) is increasing in each component,

(ii) C(x) = 0 if at least one coordinate xj = 0,
(iii) C(x) = xk if xj = 1,∀j 6= k,
(iv) for every i = 1, . . . , d, and ai, bi ∈ [0, 1] with ai ≤ bi and a hypercube

B = [a, b] = [a1, b1] × [a2, b2] × · · · × [ad, bd] whose vertices lie in the
domain of C, we have volume VC(B) ≥ 0, where VC(B) is defined as
follows,

VC(B) =
2∑

i1=1

. . .

2∑

id=1

(−1)i1+···+idC(x1,i1 , . . . , xd,id)

for all x1,1, . . . , xd,1 ∈ [0, 1] and x1,2, . . . , xd,2 ∈ [0, 1] with xj,1 ≤
xj,2, (1 ≤ j ≤ d).

Theorem 3.2.2 (Sklar’s theorem, [18]). Let F be a d-dimensional distri-
bution function with margins F1, F2, . . . , Fd. Then there exits an d-copula C
such that for all x1, . . . , xd ∈ Rd, F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). If
F1, . . . , Fd are continuous, then C is unique; otherwise, C is uniquely deter-
mined on Ran(F1)×· · ·×Ran(Fd). Conversely, if C is an d-copula and dimen-
sional distribution function with margins F1, . . . , Fd. Here, Ran(F ) indicates
range of the function F .
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Let Cd denote the set of all d-dimensional copulas. Denote by ∂iC the partial
derivative of C ∈ Cd with respect to the i-th variable.

Example 3.2.3.

(1) The C2 can be equipped with the ∗-multiplication (see [16]), defined
by;

A ∗B : [0, 1]2 → [0, 1] for all A,B ∈ C2

(A ∗B)(x, y) =
∫

0

1

∂2A(x, t)∂1B(t, y)dt.

Notice that (A∗B)(x, y) is well defined because each partial derivative
is an L1-function with respect to t, as well as L∞-function. The set of
copulas is a non-commutative semigroup under the operation ∗. For all
(x1, . . . , xn) ∈ In, where C+ is the so-called Fréchet-Hoeffding Upper
given by C+(x1, . . . , xn) = min{x1, . . . , xn}. Direct calculations show
that for any copula C ∈ C2 we have C+ ∗C = C ∗C+ = C. The copula
C+ represents the unit element in (C2, ∗).

(2) Here, we define a generalization of the ∗ product over the copulas. Let
A ∈ Cm and B ∈ Cn. We can define the (m + n − 1)-copula by the
following;

A ? B : [0, 1]m+n−1 −→ [0, 1]

(A ? B)(x1, . . . , xm+n−1)

=
∫ xm

0

∂mA(x1, . . . , xm−1, t)∂1B(t, xm+1, . . . , xm+n−1)dt.

Observe, if m = n = 2, the ? and ∗ products are related by

(A ∗B)(x, y) = (A ? B)(x, 1, y).

By arguments similar to those used in [16], it is readily verified that
A ? B is (m + n − 1)-copula and that the ∗ product distributive over
convex combinations, is associative and continuous in each place.

Now, we introduce a new construction of copulas.

Proposition 3.2.4. Let A and B be two d-copulas in C2 and let C = {Cl}l∈L
be a family in Cd. The the mapping (A ?C B) : [0, 1]d → P∗([0, 1]) defined by

(A∗CB)(x1, . . . , xd)

=
⋃

l∈L

⋃

i+j=d+1

∫ 1

0

Cl(∂iA(x1, . . . , xi−1, t, xi+1 . . . , xd), ∂jB(x1, . . . , xj−1, t, xj+1 . . . , xd))dt.

is an n-ary hyperoperation.

Proof. The proposition can be obtained from definitions and the proof is omit-
ted. ¤
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4. Topological hyperdynamical systems

Let (H, τ) be a topological space and (H, (λt)t∈L) be a hyperalgebra, where
λt : Hnt → P∗(H).

Definition 4.1. The hyperoperation λt is called;
(1) pseudo-continuous or for short p-continuous, if every O ∈ τ the set

Oλt
= {(x1, . . . , xn) ∈ Hn : λt(x1, . . . , xn) ⊆ O} is open in Hn,

(2) strongly pseudo-continuous or for short sp-continuous, if for every O ∈
τ the set Oλt = {(x1, . . . , xn) ∈ Hn : λt(x1, . . . , xn) = O} is open in
Hn.

We denote by τn the Cartesian product τ × · · · × τ , where τ appears n times.

Definition 4.2. Let (H, (λt)t∈L) be a hyperalgebra, where λt : Hnt → P∗(H).
Let (H, τ) be a topological space and τ∗ be a topology on P∗(H).

(1) The hyperoperation λt is called τ∗-continuous if the mapping λt is
continuous with respect to topologies τn and τ∗.

(2) The triple (H, (λt)t∈L, τ) is called a pseudo-topological (strongly pseu-
do-topological) hypersystem, if the hyperoperations λt for all t ∈ L,
are pseudo-continuous (strongly pseudo-continuous).

(3) The quadruple (H, (λt)t∈L, τ, τ∗) is called τ∗-topological hypersystem,
if the hyperoperation (λt)t∈L is τ∗-continuous.

Now, we will show that for a given topology τ on H, it is possible to find
a topology τ∗ in such a way that τ∗-continuity means just p-continuity or sp-
continuity, respectively.

Proposition 4.3. Let (H, τ) be a topological space. Then the family U con-
sisting of all sets Sv = {u ∈ P∗(H) : u ⊆ v}, v ∈ τ , is a base of a topology τU
on P∗(H).

Proof. Let Sv1 , Sv2 ∈ U , v1, v2 ∈ τ . Evidently, Sv1∩Sv2 = Sv1∩v2 as v1∩v2 ∈ τ .
Thus for every point h ∈ Sv1 ∩ Sv2 there exists Sv1∩v2 such that Sv1∩v2 ⊆
Sv1 ∩ Sv2 . Further, for every h ∈ H there exists a SH = P∗(H) (Here H ∈ τ)
such that h ∈ SH . ¤

The topology TU on P∗(H) in Proposition 4.3 is called an upper topology on
P∗(H) induced by the topology τ on H.

Theorem 4.4. Let (H, (λnt)t∈L) be a hyperalgebra and (H, τ) be a topological
space. Then (H, (λnt)t∈L) is a pseudo-topological hypersystem if and only if
the quadruple (H, (λnt)t∈L, τ, τU ) is τU -topological hypersystem.

Proof. For an open set v ∈ τ we have:

λ−1
nt

(Sv) = {(h1, . . . , hnt) ∈ Hnt : λnt(h1, . . . , hnt) ∈ Sv}
= {(h1, . . . , hnt) ∈ Hnt : λnt(h1, . . . , hnt) ⊆ v} = V∗.

Therefore λnt is continuous if and only if V∗ is open for any v ∈ τ , i.e., when
λnt is p-continuous. ¤
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Proposition 4.5. Let (H, τ) be a topological space. Then the family F con-
sisting of all sets

Iv = {u ∈ P∗(H) : u ≈ v}, v ∈ τ,
is a subbase of topology τF on P∗(H), where u ≈ v means u ∩ v 6= ∅.
Proof. It is sufficient to verify that

⋃
v∈τ Iv = P∗(H) which is evident as H ∈ τ

and IH = P∗(H). ¤
Definition 4.6. The topology τF on P∗(H) in Proposition 4.5 is called a lower
topology on P∗(H) induced by the topology τ on H.

Theorem 4.7. Let (H, (λnt)t∈L) be a hyperalgebra and (H, τ) be a topological
space. Then (H, (λnt)t∈L,τ ) is a strongly pseudo-topological hypersystem if and
only if the quadruple (H, (λnt

)t∈L, τ, τF ) is τF -topological hypersystem.

Proof. For an open set v ∈ τ we have:

λ−1
nt

(Iv) = {(h1, . . . , hnt
) ∈ Hnt : λnt

(h1, . . . , hnt
) ∈ Iv}

= {(h1, . . . , hnt
) ∈ Hnt : λnt

(h1, . . . , hnt
) ≈ v} = V ∗.

Therefore λnt is continuous if and only if V ∗ is open for any v ∈ τ , i.e., when
λnt is sp-continuous. ¤

In 1922 an Austrian mathematician, L. Vietoris [19] defined on the collection
of all non-empty closed subsets Cl(H) of a topological space (H, τ) a topology
as follows: for each finite collection U1, . . . , Uk ∈ τ , let 〈U1, . . . , Uk〉 denote the
set of all s ∈ Cl(H) such that S ⊆ ⋃k

i=1 and S ∩Ui 6= ∅ for each i = 1, 2, . . . , k.
The sets 〈U1, . . . , Uk〉 form the base of a topology on Cl(H). This approach
can be applied to the collection of all non-empty subsets of (H, τ) as follows:

Proposition 4.8. Let (H, τ) be a topological space. For any u1, . . . , uk ∈ τ, k ∈
N, let us denote

V(u1, . . . , uk) = {B ∈ P∗(H) : B ⊆
k⋃

i=1

ui and B ≈ ui; for i = 1, . . . , k}.

The family B of all set V(u1, . . . , uk) forms a base of a topological space (P∗(H),
τV).

The topology τV in Proposition 4.8 is called a Vietoris topology on P∗(H).
The vietories topology is one of the possible ways how to define a topology

P∗(H) if a topology on H is given.

Proposition 4.9. Vietoris topology τV is the lowest common refinement of
upper and lower topologies τU and τF .

Theorem 4.10. Let (H, τ) be a topological space and (H, (λnt)t∈L) be a hy-
peralgebra. The triple (H, (λnt)t∈L, τ) is both pseudotopological and strongly
pseudotopological hypersystem if and only if the quadruple (H, (λnt)t∈L, τ, τV)
is τV - hypersystem.

Proof. The proof is evident. ¤



UNIVERSAL HYPERDYNAMICAL SYSTEMS 523

5. Universal hyperdynamical systems

A universal hyperdynamical system Φ of type τ is a triple (X,Φ,H), where
H = (H, (λnt

)t∈L) is a hyperalgebra of type L,X is a non-empty set and Φ is
a map Φ : H ×X → P∗(H) with the following property;
If h1, . . . , hnt ∈ H and x ∈ X, then

Φ(h1,Φ(h2,Φ(. . . ,Φ(hnt , x), . . .))) ∈ Φ(λnt)(h1, . . . , hnt), x),

where Φ(λnt(h1, . . . , hnt), x) = {Φ(g, x) : g ∈ λnt(h1, . . . , hnt)}.
Definition 5.1. Let (H, (λnt

)t∈L) and (H ′, (λnt
)′t∈L) be two hyperalgebras of

type L. Two universal hyperdynamical systems (X,Φ,H) and (X ′,Φ′,H′) of
type L, are called conjugate universal hyperdynamical systems if there exist
one to one and onto maps T : X → X ′ and ϕ : H → H ′ such that the following
tow axioms hold;

(1) ϕ(λnt(h1, . . . , hnt)) = λ′nt(ϕ(h1), . . . , ϕ(hnt)) for all h1, . . . , hnt ∈ H,
(2) T (Φ(h, x)) = Φ′(ϕ(h), T (x)) for all h ∈ H and x ∈ X.

Theorem 5.2. Let (T, ϕ) be a conjugate relation between (X, Φ, H) and (X ′,
Φ′, H′) and (T ′, ϕ′) be conjugate relation between (X ′, Φ′, H′) and (X ′′, Φ′′,
H′′), where all universal hyperdynamical systems are of type L. Then

(1) the relation (T−1, ϕ−1) is a conjugate relation between (X ′,Φ′,H′) and
(X,Φ,H),

(2) the relation (T ◦T ′, ϕ′ ◦ϕ) is a conjugate relation between (X,Φ,H) and
(X ′′,Φ′′,H′′).
Proof. (1) If h′1, . . . , h

′
nt
∈ H ′, then

ϕ−1(λ′nt(h
′
1, . . . , h

′
nt

)) = ϕ−1(λ′nt(ϕ(h1), . . . , ϕ(hnt)))

= ϕ−1(ϕλnt(h1, . . . , hnt))

= λnt(h1, . . . , hnt)

= λnt(ϕ
−1(ϕ(h1)), . . . , ϕ−1(ϕ(h1)nt))

= λnt(ϕ
−1(h′1), . . . , ϕ

−1(hnt)
′),

where h1, . . . , hnt ∈ H. For all h′ ∈ H ′ and x′ ∈ X ′, we have

T (Φ(ϕ−1(h′), T−1(x′)) = Φ′(ϕ(ϕ−1(h′), T (T−1(x′))))

= Φ′(h′, x′),

so Φ(ϕ−1(h′), T−1(x′)) = T−1(Φ′(h′, x′)).
(2) For all h ∈ H and x ∈ X, we have

Φ′′(ϕ′(ϕ(h)), T ′(T (x′))) = T ′(Φ′(ϕ(h), T (x)))

= T ′(T (Φ′(h, x)))

= (T ′ ◦ T )(Φ′(h, x)). ¤
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For any point x ∈ X, the hyperorbit of x is the set OH(x) = {Φ(h, x) : h ∈
H}.
Proposition 5.3. The set OH(x) is a universal hyperalgebra of type L, where
λnt is a hyperoperation on H for each t ∈ L.

Theorem 5.4. If (X,Φ,H) and (X ′,Φ′,H′) are conjugate under (T, ϕ), then
T (OH(x)) = OH

′
(T (x)).

Proof. If y ∈ T (OH(x)), then there exists h ∈ H such that

y ∈ T (Φ(h, x)) = Φ′(ϕ(h), T (x)) ∈ OH′(T (x)).

Since conjugate relation is an equivalence relation, so the first part of the proof
shows that T−1(OH

′
(T (x))) ⊆ OH(x). Thus OH

′
(T (x)) ⊆ T (OH(x)). ¤

The subset A ⊆ X is called invariant, if Φ(H,A) = A. For any point x ∈ X,
the hyperstabilizer of x, is defined as Sx = {h ∈ H : φ(h, x) = x}. If Sx 6= ∅,
then Sx is an universal hyperdynamical system (X,φ,H) of type L.

6. Immersed universal hyperalgebra

Throughout this paragraph, we work in the C∞ category.

Definition 6.1. An n-ary hypergroupoid (H,λn) is called an immersed uni-
versal algebra if H is a smooth real manifold and for all xn1 ∈ H, f(xn1 ) is an
immersed submanifold of H.

Example 6.2. A p-plane (with p ≤ n) in Rn is a p-dimensional vector subspace
of Rn and so it is determined by an ordered set of p independent vectors of RN .
We can define a C∞ structure on the set G(p,Rn) of all p-planes in Rn, which
is called a Grassmann manifold. If π1, . . . , πn ∈ G(p,Rn), then we define an
n-ary hyperoperation as follows:

λn(π1, . . . , πn) = {π ∈ G(p,Rn) | π is a p-plane of π1 + · · ·+ πn}.
G(p,Rn) with this n-ary hyperoperation and the C∞ structure of Grassmann
manifold is an immersed universal hyperalgebra.

Proposition 6.3. Let (H1, λn) and (H2, λm) be immersed universal hyperal-
gebras. Then (H1 ×H2, λn × λm) is an immersed universal algebra.

Proof. We know that H = H1 ×H2 is a smooth manifold. Only, we show that
for given x = (x1, . . . , xn) ∈ Hn

1 , y = (y1, . . . , yn) ∈ Hm
2 , the set λn(x1, . . . , xn)

×λm(y1, . . . , ym) is an immersed submanifold ofH. Since i1 : λn(x1, . . . , xn) →
H1 and i2 : λm(y1, . . . , yn) → H2 are immersions, the map i : λn(x1, . . . , xn)×
λm(y1, . . . , ym) → H1×H2 defined by i(c1, c2) = (i1(c1), i2(c2)) is an immersion
as well. Because, it is a one to one map and di(c1 × c2) = di1(c1) × di2(c2),
which is a one to one map. ¤
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Proposition 6.4. If (H,λn) is an immersed universal hyperalgebra, then any
open subset U of H with the n-ary hyperoperation λUn on Un defined by λUn (u1,
. . . , un) = λn(u1, . . . , un) ∩ U is an immersed universal hyperalgebra.

Proof. U with the atlas AU = {smooth charts (v, θ) of H : V ⊂ U} is a
manifold. Moreover, it is a universal hyperalgebra. If u1, . . . , un ∈ U , then i :
λn(u1, . . . , un) → H is an immersion. Hence iU : λn(u1, . . . , un)∩U → U is also
an immersion. Therefore (U, λUn ) is an immersed universal hyperalgebra. ¤

Proposition 6.5. If (H,λn) is an immersed universal algebra and ψ : H → Rk
is a smooth one to one immersion, then ψ(H) with the n-ary hyperoperation

λψn(ψ(h1), . . . , ψ(hn)) = ψ(λn(h1, . . . , hn))

is an immersed universal hyperalgebra, where the smooth structure of ψ(H) is
the smooth structure induced by ψ

Proof. It is straightforward. ¤
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