BROWDER'S TYPE STRONG CONVERGENCE THEOREM FOR S-NONEXPANSIVE MAPPINGS

JONG KYU KIM, DAYA RAM SAHU, AND SAJID ANWAR

ABSTRACT. We prove a common fixed point theorem for S-contraction mappings without continuity. Using this result we obtain an approximating curve for S-nonexpansive mappings in a Banach space and prove Browder's type strong convergence theorem for this approximating curve. The demiclosedness principle for S-nonexpansive mappings is also established.

1. Introduction

Let C be a subset of a normed space X. A mapping $T:C\to X$ is said to be nonexpansive if

$$||Tx - Ty|| \le ||x - y||$$

for all $x,y \in C$. Suppose $S:C \to X$ is a mapping. Then T is said to be S-nonexpansive if

$$||Tx - Ty|| \le ||Sx - Sy||$$

for all $x, y \in C$. The class of S-nonexpansive mappings is a generalization of that of nonexpansive mappings [7].

In 1967, Browder [2] proved the following strong convergence theorem for nonexpansive mappings: Let C be a nonempty closed convex bounded subset of a Hilbert space H and $T: C \to C$ a nonexpansive self-mapping. Let $u \in C$ and for each $t \in (0,1)$, let

$$G_t x = tu + (1-t)Tx, \ x \in C.$$

Then G_t has a unique fixed point x_t in C and x_t converges strongly to a fixed point of T in C as $t \to 0$.

On the other hand, Shahzad [8] introduced the notion of R-subweakly commutativity which provides existence of a curve $\{x_{\lambda}\}$ in C defined by

(1.1)
$$x_{\lambda} = Sx_{\lambda} = (1 - \lambda)q + \lambda Tx_{\lambda} \text{ for all } \lambda \in (0, 1)$$

Received October 16, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 47H09, 46B20, 47H10, 54H25.

 $Key\ words\ and\ phrases.$ demicontinuity, R-weakly commutativity, S-contraction mapping, S-nonexpansive mapping.

The first author was supported by the Kyungnam University Research Fund 2008.

for S-nonexpansive mappings (see Proposition 3.3).

In this paper, an important existence result as a significant improvement of a result of Shahzad [8] for S-contraction mappings without continuity is proved. This result is applied for existence of approximating curve $\{x_{\lambda}\}$ defined by (1.1) and existence of fixed points of S-nonexpansive mappings without continuity. Also we prove demiclosedness principle for S-nonexpansive mappings and prove strong convergence of curve $\{x_{\lambda}\}$ in a reflexive Banach space with a weakly continuous duality mapping. Our results are significant improvements of corresponding results of Al-Thagafi [1], Dotson [3], Jungck [4] and Shahzad [8]. One of our results is an extension of celebrated result of Browder [2] from Hilbert space to Banach space for the class of S-nonexpansive mappings.

2. Preliminaries

Let (X, d) be a metric space, C a nonempty subset of X and let $S, T : C \to C$ be two mappings. Throughout this paper, we adopt the following notations:

$$C_{S,T} = \{ u \in C : Su = Tu \}$$

and

$$F(T) = \{u \in C : Tu = u\}.$$

The pair $\{S,T\}$ is said to be R-weakly commuting on C [6] if there exists R>0 such that

$$d(STx, TSx) \le Rd(Sx, Tx)$$

for all $x \in C$.

Let C be a nonempty subset of a normed space X. The set C is called q-starshaped with $q \in C$ if for all $x \in C$, the segment [x,p] joining x to q is contained in C, that is, $tx + (1-t)q \in C$ for all $x \in C$ and $0 \le t \le 1$. Note that if S is q-starshaped for every $q \in C$, then C is convex.

Let C be a nonempty q-starshaped subset of a normed space X. Then a mapping $S:C\to C$ is said to be q-affine if

$$tSx + (1-t)Sq \in C$$

for all $x \in C$ and $0 \le t \le 1$.

Definition 2.1. Let C be a nonempty subset of a normed space X and let $S,T:C\to C$ be two mappings such that $F(S)\neq\emptyset$. Suppose $q\in F(S)$ and C is q-starshaped. Then S and T are called R-subweakly commuting on C if there exists a real number R>0 such that

$$||STx - TSx|| \le Rd(Sx, [Tx, q])$$

for all $x \in C$, where $d(y, D) = \inf\{||y - z|| : z \in D\}$ for $D \subseteq C$ and $y \in C$.

It is clear from Definition 2.1 that commutativity implies R-subweak commutativity, but the converse is not true in general (see, example in [8]).

Let C be a nonempty subset of a normed space X and $T: C \to C$ a mapping. When $\{x_n\}$ is a sequence in X, we denote the strong convergence of $\{x_n\}$ to x by $x_n \to x$, the weak convergence of $\{x_n\}$ to x by $x_n \to x$ and the weak* convergence of $\{x_n\}$ to x by $x_n \to^* x$. T is said to be demicontinuous if $\{x_n\}$ is a sequence in X such that $x_n \to x$, then $Tx_n \to Tx$. The mapping T is said to be weakly continuous if $\{x_n\}$ is a sequence in X such that $x_n \to x$, then $Tx_n \to Tx$. Note that every continuous mapping is demicontinuous.

Let X be a Banach space. A mapping T with domain D(T) and range R(T) in X is said to be *demiclosed* at a point $y \in R(T)$ if whenever $\{x_n\}$ is a sequence in D(T) which converges weakly to a point $u \in D(T)$ and $\{Tx_n\}$ converges strongly to y, then Tu = y.

A Banach space X is said to satisfy the Opial condition ([5]) if for each sequence $\{x_n\}$ in X which converges weakly to a point $x \in X$, we have

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

for all $y \in X, y \neq x$.

Let X be a Banach space. Then a mapping $J: X \to 2^{X^*}$ defined by

$$J(u) = \{ j \in X^* : \langle u, j \rangle = ||u||^2, ||j|| = ||u|| \}$$

is called the normalized duality mapping. Suppose that J is single-valued. Then J is said to be weakly sequentially continuous if, for each $\{x_n\}$ in X with $x_n \rightharpoonup x$, $J(x_n) \rightharpoonup^* J(x)$. It is well known that if X admits a weakly sequentially continuous duality mapping, then X satisfies the Opial condition.

3. Auxiliary results

The following lemma is an improvement of Lemma 2.1 of Shahzad [8] in the following ways:

- (i) C is not necessarily closed,
- (ii) T is not necessarily continuous,
- (iii) location of unique common fixed point is given.

Lemma 3.1. Let (X,d) be a metric space and C a nonempty subset of X. Let $S,T:C\to C$ be two mappings such that

- (i) $T(C) \subseteq S(C)$,
- (ii) T is S-contraction, i.e., there exists a constant $k \in (0,1)$ such that

$$||Tx - Ty|| \le k||Sx - Sy||$$
 for all $x, y \in C$,

(iii) $\{S,T\}$ is R-weakly commuting on C.

Then we have the following:

- (a) $F(S) \cap F(T) \cap T(C)$ is a singleton if T(C) is complete,
- (b) $F(S) \cap F(T) \cap S(C)$ is a singleton if S(C) is complete.

Proof. Pick $x_0 \in C$. Since $T(C) \subseteq S(C)$, we can construct a sequence $\{x_n\}$ in C such that $Sx_n = Tx_{n-1}$ for all $n \in \mathbb{N}$. Then

$$d(Sx_{n+1}, Sx_n) = d(Tx_n, Tx_{n-1}) \le kd(Sx_n, Sx_{n-1})$$
 for all $n \in \mathbb{N}$,

it follows that $\{Sx_n\}$ is a Cauchy sequence in C.

(a) If T(C) is complete, there exists a point $z \in T(C)$ such that $Tx_n \to z \in T(C)$. Thus, $Sx_n \to z$. Since $z \in T(C) \subseteq S(C)$, there exists $u \in C$ such that z = Su. By the S-contractivity of T, we have

$$d(Tu, Tx_n) \le kd(Su, Sx_n).$$

Taking limit as $n \to \infty$ yields

$$d(Tu, z) \le kd(z, z) = 0.$$

Thus, Su=Tu=z. Since $\{S,T\}$ is R-weakly commuting on C, it follows that Sz=Tz. Note that

$$d(Tz, Tx_n) \le kd(Sz, Sx_n).$$

Letting limit as $n \to \infty$, we obtain

$$d(Tz, z) < kd(Sz, z) = kd(Tz, z).$$

It shows that Sz = Tz = z. By the S-contractivity of T, we conclude that $F(S) \cap F(T) \cap T(C) = \{z\}.$

(b) Suppose S(C) is complete. Then $Sx_n \to z$ for some $z \in S(C)$ and there exist $u \in C$ such that z = Su. As part (a) we can show that Sz = Tz = z. The S-contractivity of T implies that $F(S) \cap F(T) \cap S(C) = \{z\}$.

Before presenting existence results, we establish the demiclosedness principle for S-nonexpansive nonself mappings.

Proposition 3.2 (Demiclosedness principle). Let X be a Banach space satisfying the Opial condition and C a nonempty weakly closed subset of X. Let $S,T:C\to X$ be two mappings such that S is weakly continuous and T is S-nonexpansive. Then S-T is demiclosed on C, i.e., if $\{x_n\}$ is a sequence in C such that $x_n \rightharpoonup u \in C$ and $(S-T)x_n \rightarrow y$, then (S-T)u = y.

Proof. Let $\{x_n\}$ be a sequence in C such that $x_n \to u \in C$ and $\lim_{n\to\infty} \|(S-T)x_n - y\| = 0$ for some $y \in X$. We show that (S-T)u = y. Suppose, for contradiction, that $(S-T)u \neq y$. Observe that

$$||Sx_n - Tu - y|| \le ||Sx_n - Tx_n - y|| + ||Tx_n - Tu||,$$

which implies that

$$\liminf_{n \to \infty} ||Sx_n - Tu - y|| \le \liminf_{n \to \infty} ||Sx_n - Su||.$$

By the weak continuity of S, we obtain that $Sx_n
ightharpoonup Su \in C$. By the Opial condition, we have

$$\liminf_{n \to \infty} ||Sx_n - Su|| < \liminf_{n \to \infty} ||Sx_n - Tu - y||
\leq \liminf_{n \to \infty} ||Sx_n - Su||,$$

a contradiction. Therefore, (S-T)u=y.

Proposition 3.3. Let C be a nonempty subset of a normed space X. Let $S,T:C\to C$ be two mappings such that

- (i) T is S-nonexpansive and S is q-affine with $q \in F(S)$,
- (ii) $T(C) \subseteq S(C)$ and C is q-starshaped,
- (iii) $\{S, T\}$ is R-subweakly commuting,
- (iv) S(C) is complete.

Then there exists exactly one point $x_{\lambda} \in S(C)$ such that

$$(3.1) x_{\lambda} = Sx_{\lambda} = (1 - \lambda)q + \lambda Tx_{\lambda}$$

for all $\lambda \in (0,1)$.

Proof. For each $\lambda \in (0,1)$, define a mapping T_{λ} by

(3.2)
$$T_{\lambda}x = (1 - \lambda)q + \lambda Tx$$

for all $x \in C$. Note that each $T_{\lambda}: C \to C$ is an S-contraction on C. Indeed,

$$||T_{\lambda}x - T_{\lambda}y|| = \lambda ||Tx - Ty||$$

$$\leq \lambda ||Sx - Sy||$$

for all $x,y\in C.$ Since $\{S,T\}$ is R-subweakly commuting and S is q-affine, we have

$$||ST_{\lambda}x - T_{\lambda}Sx|| = ||[(1 - \lambda)q + \lambda STx] - [(1 - \lambda)q + \lambda TSx]||$$

= $\lambda ||TSx - STx||$
 $\leq \lambda R||Sx - T_{\lambda}x||$

for all $x \in C$. Thus, the pair $\{S, T_{\lambda}\}$ is R-weakly commuting on C.

For $x \in C$, we have $Tx \in T(C) \subseteq S(C)$, i.e., there exists a point $y \in C$ such that $Tx = Sy \in S(C)$. Observe that

$$T_{\lambda}x = (1 - \lambda)q + \lambda Tx = (1 - \lambda)q + \lambda Sy \in S(C).$$

It follows that $T_{\lambda}(C) \subseteq S(C)$ for all $\lambda \in (0,1)$.

For each $\lambda \in (0,1)$, we conclude that

- (i) $T_{\lambda}(C) \subseteq S(C)$,
- (ii) T_{λ} is S-contraction,
- (iii)' S(C) is complete,
- (iv) $\{S, T_{\lambda}\}$ is R-weakly commuting on C.

Therefore, Lemma 3.1 implies that there exists exactly one point $x_{\lambda} \in S(C)$ such that $x_{\lambda} = Sx_{\lambda} = T_{\lambda}x_{\lambda}$.

The main results of this section are the following:

Theorem 3.4. Let C be a nonempty subset of a normed space X. Let S,T: $C \to C$ be two mappings satisfy the conditions (i) \sim (iii) of Proposition 3.3. Suppose S(C) is compact. Then we have the following:

- (a) There exists $y \in S(C)$ such that Sy = Ty.
- (b) If S or T is demicontinuous, then $y \in F(S) \cap F(T)$.

Proof. Let $\{\lambda_n\}$ be a sequence in (0,1) such that $\lambda_n \to 1$. By Proposition 3.3, there exists exactly one point $x_{\lambda_n} \in S(C)$ such that

$$x_{\lambda_n} = Sx_{\lambda_n} = (1 - \lambda_n)q + \lambda_n Tx_{\lambda_n}$$
 for all $n \in \mathbb{N}$.

Set $x_{\lambda_n} := x_n$. By the compactness of S(C), there exists a subsequence $\{\lambda_m\}$ of $\{\lambda_n\}$ such that $\lim_{m\to\infty} Sx_m = y \in S(C)$. Thus, y = Su for some $u \in C$. The assumption (ii) implies that $\{Tx_m\}$ is bounded. It follows that

$$||x_m - Tx_m|| \le (1 - \lambda_m)||q - Tx_m|| \to 0 \text{ as } m \to \infty.$$

This gives that $\lim_{m\to\infty} Tx_m = y$. By S-nonexpansiveness of T, we have

$$||Tx_m - Tu|| \le ||Sx_m - Su|| = ||Sx_m - y||.$$

Taking limit as $m \to \infty$ yields Tu = y.

- (a) Since $\{S, T\}$ is R-weakly commuting, it follows that Sy = Ty.
- (b) Suppose S is demicontinuous. Since $\lim_{m\to\infty} x_m = \lim_{m\to\infty} Sx_m = y$, it follows from the demicontinuity of S that Sy = y. Thus, we conclude from Sy = Ty that $y \in F(S) \cap F(T)$. Similarly, we can prove that $y \in F(S) \cap F(T)$ when T is demicontinuous.

Example 3.5. Let X = [0,1] with the usual metric and C = X. Define

$$Sx = \left\{ \begin{array}{ll} 0 & \quad \text{if} \quad x \in [0,1), \\ 1 & \quad \text{if} \quad x = 1 \end{array} \right. \quad \text{and} \quad Tx = 0 \text{ for all } x \in C.$$

Then all hypotheses of Theorem 3.4 are satisfied. Note that $0 \in F(S) \cap F(T)$.

Remark 3.6. The mapping S in Theorem 3.4 is not necessarily linear. Therefore, Theorem 3.4 improves Theorem 2.2 of Al-Thagafi [1], Theorem 1 of Dotson [3], Theorem 3.1 of Jungck [4] and Lemma 2.2 of Shahzad [8].

Theorem 3.7. Let C be a nonempty subset of a Banach space X. Let $S,T:C\to C$ be two mappings satisfying conditions (i) \sim (iii) of Proposition 3.3. Suppose S(C) is weakly compact. Then $F(S)\cap F(T)\neq\emptyset$ if one of the following conditions holds:

- (C_1) I-T is demiclosed at zero.
- (C_2) X satisfies the Opial condition.

Proof. Let $\{\lambda_n\}$ be a sequence in (0,1) with $\lambda_n \to 1$. Since S(C) is weakly compact, it follows that S(C) is norm-closed and hence it is complete. Then form Proposition 3.3, there exists exactly one point x_n such that

$$x_n = Sx_n = (1 - \lambda_n)q + \lambda_n Tx_n$$
 for all $n \in \mathbb{N}$.

The condition $T(C) \subseteq S(C)$ implies that T(C) is bounded and hence $x_n - Tx_n \to 0$. By the weak compactness of S(C), there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to v$. The weak continuity of S implies that v = Sv.

If I - T is demiclosed at zero, then v = Tv and hence theorem is proved. If we assume that X satisfies the Opial condition, then we can conclude form Proposition 3.2 that Sv = Tv.

Remark 3.8. The main results of this section can be extended in complete p-normed spaces.

4. Browder's type strong convergence theorem

The following result extends Browder's strong convergence theorem for S-nonexpansive mappings.

Theorem 4.1. Let X be a reflexive Banach space with a weakly continuous duality mapping $J: X \to X^*$. Let C be a weakly closed subset of $X, S: C \to C$ a affine weakly continuous mapping with $q \in F(S)$ such that C is q-starshaped. Let $T: C \to C$ be an S-nonexpansive mapping with $C_{S,T} \neq \emptyset$ and let $\{x_{\lambda} : \lambda \in \{0,1\}\}$ be the approximating curve in C defined by (3.1). Then $\lim_{\lambda \to 1} x_{\lambda} = \tilde{x}$ exists and $\tilde{x} \in F(S) \cap F(T)$.

Proof. First, we show that $\{x_{\lambda}\}$ is bounded. Let $p \in \mathcal{C}_{S,T}$. Then Sp = Tp = u for some $u \in C$. From (3.1), we have

$$||x_{\lambda} - u|| \leq (1 - \lambda)||q - u|| + \lambda ||Tx_{\lambda} - Tp||$$

$$\leq (1 - \lambda)||q - u|| + \lambda ||Sx_{\lambda} - Sp||$$

$$= (1 - \lambda)||q - u|| + \lambda ||x_{\lambda} - u||,$$

which implies that

$$||x_{\lambda} - u|| \le ||q - u||.$$

Thus, $\{x_{\lambda}\}$ is bounded. Assume that $\{\lambda_n\}$ is a sequence in (0,1) such that $\lim_{n\to\infty}\lambda_n=1$ and $\{x_{\lambda_n}\}$ is bounded. Since X is reflexive, we may assume that $x_{\lambda_n}\rightharpoonup v\in C$. Set $x_{\lambda_n}:=x_n$. Again, from (3.1), we have

$$||x_n - Tx_n|| \le (1 - \lambda_n)||q - Tx_n|| \to 0.$$

On the other hand, we have

$$\langle x_{\lambda} - Tx_{\lambda}, J(x_{\lambda} - u) \rangle = \langle x_{\lambda} - u + Tp - Tx_{\lambda}, J(x_{\lambda} - u) \rangle$$

$$= \|x_{\lambda} - u\|^{2} - \langle Tx_{\lambda} - Tp, J(x_{\lambda} - p) \rangle$$

$$\geq \|x_{\lambda} - u\|^{2} - \|Tx_{\lambda} - Tp\| \|x_{\lambda} - u\|$$

$$\geq \|x_{\lambda} - u\|^{2} - \|Sx_{\lambda} - Sp\| \|x_{\lambda} - u\|$$

$$= 0.$$

Since $x_{\lambda} - Tx_{\lambda} = \frac{1-\lambda}{\lambda}(q - x_{\lambda})$, it follows from (4.1) that

$$(4.2) \langle x_{\lambda} - q, J(x_{\lambda} - u) \rangle \le 0.$$

Since S is weakly continuous, $x_n \to v \in C$ and $Sx_n - Tx_n \to 0$, we obtain from Proposition 3.2 that Sv = Tv. Suppose that Sv = Tv = w for some $w \in C$. Using (4.2), we get

$$(4.3) \langle x_n - q, J(x_n - w) \rangle \le 0.$$

From (4.3), we have

$$||x_n - w||^2 = \langle x_n - w, J(x_n - w) \rangle$$

$$= \langle x_n - q, J(x_n - w) \rangle + \langle q - w, J(x_n - w) \rangle$$

$$\leq \langle q - w, J(x_n - w) \rangle.$$

Since J is weakly continuous, it follows from (4.4) that $x_n \to w$ as $n \to \infty$. Note that the weak continuity of S implies that $x_n = Sx_n \rightharpoonup Sw$. By the uniqueness of weak limit of $\{x_n\}$, we have Sw = w. Observe that

$$||w - Tw|| \le ||w - x_n|| + ||x_n - Tx_n|| + ||Tx_n - Tw||$$

$$\le ||w - x_n|| + ||x_n - Tx_n|| + ||Sx_n - Sw||$$

$$\le 2||w - x_n|| + ||x_n - Tx_n|| \to 0 \text{ as } n \to \infty.$$

Thus, w = Sw = Tw.

Now, it remains to prove that the approximating curve $\{x_{\lambda}\}$ converges strongly to w. Suppose, for contradiction, that there exists another sequence $\{x_{\lambda_{n'}}\}\subset\{x_{\lambda}\}$ such that $x_{\lambda_{n'}}\to w'\neq w$ as $\lambda_{n'}\to 1$. Then, we have $w'\in F(S)\cap F(T)$. From (4.2), we have

$$(4.5) \langle x_{\lambda} - q, J(x_{\lambda} - p) \rangle \le 0 \text{for all } p \in F(S) \cap F(T).$$

Using (4.5), we have

$$\langle w-q, J(w-w')\rangle \leq 0$$
 and $\langle q-w', J(w-w')\rangle = \langle w'-q, J(w'-w)\rangle \leq 0$.

Adding these two inequalities, we obtain

$$||w - w'||^2 = \langle w - w', J(w - w') \rangle \le 0.$$

Thus, w=w'. Therefore, $\lim_{\lambda\to 1} x_\lambda$ exists and $\lim_{\lambda\to 1} x_\lambda=w\in F(S)\cap F(T)$.

Remark 4.2. Nonemptyness of $C_{S,T}$ can be replaced by boundedness of T(C).

References

- M. A. Al-Thagafi, Common fixed points and best approximation, J. Approx. Theory 85 (1996), no. 3, 318–323.
- [2] F. E. Browder, Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967), 82–90.
- [3] W. G. Dotson, Jr., Fixed point theorems for non-expansive mappings on star-shaped subsets of Banach spaces, J. London Math. Soc. (2) 4 (1972), 408-410.
- [4] G. Jungck, Coincidence and fixed points for compatible and relatively nonexpansive maps, Internat. J. Math. Math. Sci. 16 (1993), no. 1, 95–100.
- [5] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
- [6] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), no. 2, 436–440.
- [7] S. Park, On f-nonexpansive maps, J. Korean Math. Soc. 16 (1979), no. 1, 29–38.
- [8] N. Shahzad, Invariant approximations and R-subweakly commuting maps, J. Math. Anal. Appl. 257 (2001), no. 1, 39–45.

Jong Kyu Kim

DEPARTMENT OF MATHEMATICS EDUCATIONS

KYUNGNAM UNIVERSITY KYUNGNAM 631-701, KOREA

 $E ext{-}mail\ address: jongkyuk@kyungnam.ac.kr}$

Daya Ram Sahu

DEPARTMENT OF MATHEMATICS BANARAS HINDU UNIVERSITY VARANASI-221005, INDIA

 $E ext{-}mail\ address: drsahu@bhu.ac.in}$

Sajid Anwar

ANJUMAN COLLEGE OF ENGINEERING AND TECHNOLOGY MANGALWARI BAZAR ROAD, SADAR, NAGPUR-1, INDIA

 $E ext{-}mail\ address: {\tt sajid_anwar@sify.com}$