STABILITY OF A FUNCTIONAL EQUATION DERIVING FROM QUARTIC AND ADDITIVE FUNCTIONS

Madjid Eshaghi Gordji

Abstract. In this paper, we obtain the general solution and the generalized Hyers-Ulam Rassias stability of the functional equation
$f(2 x+y)+f(2 x-y)=4(f(x+y)+f(x-y))-\frac{3}{7}(f(2 y)-2 f(y))+2 f(2 x)-8 f(x)$.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [28] in 1940, concerning the stability of group homomorphisms. Let $\left(G_{1}, \cdot\right)$ be a group and let $\left(G_{2}, *\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$, such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x \cdot y), h(x) * h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$? In the other words, under what condition does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, D. H. Hyers [13] gave a first affirmative answer to the question of Ulam for Banach spaces. Let $f: E \rightarrow E^{\prime}$ be a mapping between Banach spaces such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in E$, and for some $\delta>0$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \delta
$$

for all $x \in E$. Moreover if $f(t x)$ is continuous in t for each fixed $x \in E$, then T is linear. Finally in 1978, Th. M. Rassias [25] proved the following theorem.

Received October 12, 2008.
2000 Mathematics Subject Classification. 39B82, 39B52.
Key words and phrases. Hyers-Ulam-Rassias stability.

Theorem 1.1. Let $f: E \rightarrow E^{\prime}$ be a mapping from a norm vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$, then inequality (1.1) holds for all $x, y \neq 0$, and (1.2) for $x \neq 0$. Also, if the function $t \mapsto f(t x)$ from \mathbb{R} into E^{\prime} is continuous for each fixed $x \in E$, then T is linear.

In 1991, Z. Gajda [9] answered the question for the case $p>1$, which was rased by Rassias. This new concept is known as Hyers-Ulam-Rassias stability of functional equations (see [1, 3], [5-15], [22-24]).

In [19], W.-G. Park and J. H. Bae, considered the following functional equation:
(1.3) $\quad f(2 x+y)+f(2 x-y)=4(f(x+y)+f(x-y))+24 f(x)-6 f(y)$.

In fact they proved that a function f between real vector spaces X and Y is a solution of (1.3) if and only if there exists a unique symmetric multi-additive function $B: X \times X \times X \times X \rightarrow Y$ such that $f(x)=B(x, x, x, x)$ for all x (see $[2,4],[16-21],[26,27])$. It is easy to show that the function $f(x)=x^{4}$ satisfies the functional equation (1.3), which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic function.

We deal with the next functional equation deriving from quartic and additive functions:
$f(2 x+y)+f(2 x-y)=4(f(x+y)+f(x-y))-\frac{3}{7}(f(2 y)-2 f(y))+2 f(2 x)-8 f(x)$.
It is easy to see that the function $f(x)=a x^{4}+b x$ is a solution of the functional equation (1.4). In the present paper we investigate the general solution and the generalized Hyers-Ulam-Rassias stability of the functional equation (1.4).

2. General solution

In this section we establish the general solution of functional equation (1.4).
Theorem 2.1. Let X, Y be vector spaces, and let $f: X \rightarrow Y$ be a function satisfies (1.4). Then the following assertions hold.
a) If f is even function, then f is quartic.
b) If f is odd function, then f is additive.

Proof. a) Putting $x=y=0$ in (1.4), we get $f(0)=0$. Setting $x=0$ in (1.4), by evenness of f, we obtain

$$
\begin{equation*}
f(2 y)=16 f(y) \tag{2.1}
\end{equation*}
$$

for all $y \in X$. Hence (1.4) can be written as

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=4(f(x+y)+f(x-y))+24 f(x)-6 f(y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$. This means that f is a quartic function.
b) Setting $x=y=0$ in (1.4) to obtain $f(0)=0$. Putting $x=0$ in (1.4), then by oddness of f, we have

$$
\begin{equation*}
f(2 y)=2 f(y) \tag{2.3}
\end{equation*}
$$

for all $y \in X$. We obtain from (1.4) and (2.3) that

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=4(f(x+y)+f(x-y))-4 f(x) \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$. Replacing y by $-2 y$ in (2.4), it follows that

$$
\begin{equation*}
f(2 x-2 y)+f(2 x+2 y)=4(f(x-2 y)+f(x+2 y))-4 f(x) . \tag{2.5}
\end{equation*}
$$

Combining (2.3) and (2.5) to obtain
(2.6) $\quad f(x-y)+f(x+y)=2(f(x-2 y)+f(x+2 y))-2 f(x)$.

Interchange x and y in (2.6) to get the relation
(2.7) $\quad f(x+y)+f(x-y)=2(f(y-2 x)+f(y+2 x))-2 f(y)$.

Replacing y by $-y$ in (2.7), and using the oddness of f to get
(2.8) $\quad f(x-y)-f(x+y)=2(f(2 x-y)-f(2 x+y))+2 f(y)$.

From (2.4) and (2.8), we obtain

$$
\begin{equation*}
4 f(2 x+y)=9 f(x+y)+7 f(x-y)-8 f(x)+2 f(y) \tag{2.9}
\end{equation*}
$$

Replacing $x+y$ by y in (2.9) it follows that

$$
\begin{equation*}
7 f(2 x-y)=4 f(x+y)+2 f(x-y)-9 f(y)+8 f(x) \tag{2.10}
\end{equation*}
$$

By using (2.9) and (2.10), we lead to
(2.11) $f(2 x+y)+f(2 x-y)=\frac{79}{28} f(x+y)+\frac{57}{28} f(x-y)-\frac{6}{7} f(x)-\frac{11}{14} f(y)$.

We get from (2.4) and (2.11) that

$$
\begin{equation*}
3 f(x+y)+5 f(x-y))=8 f(x)-28 f(y) . \tag{2.12}
\end{equation*}
$$

Replacing x by $2 x$ in (2.4) it follows that

$$
\begin{equation*}
f(4 x+y)+f(4 x-y)=16(f(x+y)+f(x-y))-24 f(x) \tag{2.13}
\end{equation*}
$$

Setting $2 x+y$ instead of y in (2.4), we arrive at

$$
\begin{equation*}
f(4 x+y)-f(y)=4(f(3 x-y)+f(x-y))-4 f(x) \tag{2.14}
\end{equation*}
$$

Replacing y by $-y$ in (2.14), and using oddness of f to get

$$
\begin{equation*}
f(4 x-y)+f(y)=4(f(3 x+y)+f(x+y))-4 f(x) \tag{2.15}
\end{equation*}
$$

Adding (2.14) to (2.15) to get the relation
$f(4 x+y)+f(4 x-y)=4(f(3 x+y)+f(3 x-y))-4(f(x+y)+f(x-y))-8 f(x)$.

Replacing y by $x+y$ in (2.4) to obtain

$$
\begin{equation*}
f(3 x+y)+f(x-y)=4(f(2 x+y)-f(y))-4 f(x) . \tag{2.17}
\end{equation*}
$$

Replacing y by $-y$ in (2.17), and using the oddness of f, we lead to

$$
\begin{equation*}
f(3 x-y)+f(x+y)=4(f(2 x-y)+f(y))-4 f(x) \tag{2.18}
\end{equation*}
$$

Combining (2.17) and (2.18) to obtain

$$
\begin{equation*}
f(3 x+y)+f(3 x-y)=15(f(x+y)+f(x-y))-24 f(x) . \tag{2.19}
\end{equation*}
$$

Using (2.16) and (2.19) to get

$$
\begin{equation*}
f(4 x+y)+f(4 x-y)=56(f(x+y)+f(x-y))-104 f(x) . \tag{2.20}
\end{equation*}
$$

Combining (2.13) and (2.20), we arrive at

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) \tag{2.21}
\end{equation*}
$$

Hence by using (2.12) and (2.21) it is easy to see that f is additive. This completed the proof of theorem.

Theorem 2.2. Let X, Y be vector spaces, and let $f: X \rightarrow Y$ be a function. Then f satisfies (1.4) if and only if there exist a unique symmetric multiadditive function $B: X \times X \times X \times X \rightarrow Y$ and a unique additive function $A: X \rightarrow Y$ such that $f(x)=B(x, x, x, x)+A(x)$ for all $x \in X$.

Proof. Suppose f satisfies (1.4). We decompose f into the even part and odd part by setting

$$
f_{e}(x)=\frac{1}{2}(f(x)+f(-x)), \quad f_{o}(x)=\frac{1}{2}(f(x)-f(-x))
$$

for all $x \in X$. By (1.4), we have

$$
\begin{aligned}
& f_{e}(2 x+y)+f_{e}(2 x-y) \\
= & \frac{1}{2}[f(2 x+y)+f(-2 x-y)+f(2 x-y)+f(-2 x+y)] \\
= & \frac{1}{2}[f(2 x+y)+f(2 x-y)]+\frac{1}{2}[f(-2 x+(-y))+f(-2 x-(-y))] \\
= & \frac{1}{2}\left[4(f(x+y)+f(x-y))-\frac{3}{7}(f(2 y)-2 f(y))+2 f(2 x)-8 f(x)\right] \\
& +\frac{1}{2}\left[4(f(-x-y)+f(-x-(-y)))-\frac{3}{7}(f(-2 y)-2 f(-y))+2 f(-2 x)-8 f(-x)\right] \\
= & 4\left[\frac{1}{2}(f(x+y)+f(-x-y))+\frac{1}{2}(f(-x+y)+f(x-y))\right] \\
& -\frac{3}{7}\left[\frac{1}{2}(f(2 y)+f(-2 y))-(f(y)-f(-y))\right] \\
& +2\left[\frac{1}{2}(f(2 x)+f(-2 x))\right]-8\left[\frac{1}{2}(f(x)+f(-x))\right] \\
= & 4\left(f_{e}(x+y)+f_{e}(x-y)\right)-\frac{3}{7}\left(f_{e}(2 y)-2 f_{e}(y)\right)+2 f_{e}(2 x)-8 f_{e}(x)
\end{aligned}
$$

for all $x, y \in X$. This means that f_{e} holds in (1.4). Similarly we can show that f_{o} satisfies (1.4). By above theorem, f_{e} and f_{o} are quartic and additive respectively. Thus there exists a unique symmetric multi-additive function $B: X \times X \times X \times X \rightarrow Y$ such that $f_{e}(x)=B(x, x, x, x)$ for all $x \in X$. Put $A(x):=f_{o}(x)$ for all $x \in X$. It follows that $f(x)=B(x)+A(x)$ for all $x \in X$. The proof of the converse is trivially.

3. Stability

Throughout this section, X and Y will be a real normed space and a real Banach space, respectively. Let $f: X \rightarrow Y$ be a function then we define $D_{f}: X \times X \rightarrow Y$ by

$$
\begin{aligned}
D_{f}(x, y)= & 7[f(2 x+y)+f(2 x-y)]-28[f(x+y)+f(x-y)] \\
& +3[f(2 y)-2 f(y)]-14[f(2 x)-4 f(x)]
\end{aligned}
$$

for all $x, y \in X$.
Theorem 3.1. Let $\psi: X \times X \rightarrow[0, \infty)$ be a function satisfies $\sum_{i=0}^{\infty} \frac{\psi\left(0,2^{i} x\right)}{16^{i}}<$ ∞ for all $x \in X$, and $\lim \frac{\psi\left(2^{n} x, 2^{n} y\right)}{16^{n}}=0$ for all $x, y \in X$. If $f: X \rightarrow Y$ is an even function such that $f(0) \stackrel{16}{=} 0$, and that

$$
\begin{equation*}
\left\|D_{f}(x, y)\right\| \leq \psi(x, y) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$, then there exists a unique quartic function $Q: X \rightarrow Y$ satisfying (1.4) and

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{48} \sum_{i=0}^{\infty} \frac{\psi\left(0,2^{i} x\right)}{16^{i}} \tag{3.2}
\end{equation*}
$$

for all $x \in X$.
Proof. Putting $x=0$ in (3.1), then we have

$$
\begin{equation*}
\|3 f(2 y)-48 f(y)\| \leq \psi(0, y) \tag{3.3}
\end{equation*}
$$

Replacing y by x in (3.3) and then dividing by 48 to obtain

$$
\begin{equation*}
\left\|\frac{f(2 x)}{16}-f(x)\right\| \leq \frac{1}{48} \psi(0, x) \tag{3.4}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2 x$ in (3.4) to get

$$
\begin{equation*}
\left\|\frac{f(4 x)}{16}-f(2 x)\right\| \leq \frac{1}{48} \psi(0,2 x) \tag{3.5}
\end{equation*}
$$

Combine (3.4) and (3.5) by use of the triangle inequality to get

$$
\begin{equation*}
\left\|\frac{f(4 x)}{16^{2}}-f(x)\right\| \leq \frac{1}{48}\left(\frac{\psi(0,2 x)}{16}+\psi(0, x)\right) \tag{3.6}
\end{equation*}
$$

By induction on $n \in \mathbb{N}$, we can show that

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{16^{n}}-f(x)\right\| \leq \frac{1}{48} \sum_{i=0}^{n-1} \frac{\psi\left(0,2^{i} x\right)}{16^{i}} \tag{3.7}
\end{equation*}
$$

Dividing (3.7) by 16^{m} and replacing x by $2^{m} x$ to get

$$
\begin{aligned}
\left\|\frac{f\left(2^{m+n} x\right)}{16^{m+n}}-\frac{f\left(2^{m} x\right)}{16^{m}}\right\| & =\frac{1}{16^{m}}\left\|f\left(2^{n} 2^{m} x\right)-f\left(2^{m} x\right)\right\| \\
& \leq \frac{1}{48 \times 16^{m}} \sum_{i=0}^{n-1} \frac{\psi\left(0,2^{i} x\right)}{16^{i}} \\
& \leq \frac{1}{48} \sum_{i=0}^{\infty} \frac{\psi\left(0,2^{i} 2^{m} x\right)}{16^{m+i}}
\end{aligned}
$$

for all $x \in X$. This shows that $\left\{\frac{f\left(2^{n} x\right)}{16^{n}}\right\}$ is a Cauchy sequence in Y, by taking the $\lim m \rightarrow \infty$. Since Y is a Banach space, then the sequence $\left\{\frac{f\left(2^{n} x\right)}{16^{n}}\right\}$ converges. We define $Q: X \rightarrow Y$ by $Q(x):=\lim _{n} \frac{f\left(2^{n} x\right)}{16^{n}}$ for all $x \in X$. Since f is even function, then Q is even. On the other hand we have

$$
\begin{aligned}
\left\|D_{Q}(x, y)\right\| & =\lim _{n} \frac{1}{16^{n}}\left\|D_{f}\left(2^{n} x, 2^{n} y\right)\right\| \\
& \leq \lim _{n} \frac{\psi\left(2^{n} x, 2^{n} y\right)}{16^{n}}=0
\end{aligned}
$$

for all $x, y \in X$. Hence by Theorem $2.1, Q$ is a quartic function. To shows that Q is unique, suppose that there exists another quartic function $Q: X \rightarrow Y$ which satisfies (1.4) and (3.2). We have $Q\left(2^{n} x\right)=16^{n} Q(x)$ and $\dot{Q}\left(2^{n} x\right)=$ $16^{n} \dot{Q}(x)$ for all $x \in X$. It follows that

$$
\begin{aligned}
\|\dot{Q}(x)-Q(x)\| & =\frac{1}{16^{n}}\left\|\dot{Q}\left(2^{n} x\right)-Q\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{16^{n}}\left[\left\|\dot{Q}\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|f\left(2^{n} x\right)-Q\left(2^{n} x\right)\right\|\right] \\
& \leq \frac{1}{24} \sum_{i=0}^{\infty} \frac{\psi\left(0,2^{n+i} x\right)}{16^{n+i}}
\end{aligned}
$$

for all $x \in X$. By taking $n \rightarrow \infty$ in this inequality we have $\dot{Q}(x)=Q(x)$.
Theorem 3.2. Let $\psi: X \times X \rightarrow[0, \infty)$ be a function satisfies

$$
\sum_{i=0}^{\infty} 16^{i} \psi\left(0,2^{-i-1} x\right)<\infty
$$

for all $x \in X$, and $\lim 16^{n} \psi\left(2^{-n} x, 2^{-n} y\right)=0$ for all $x, y \in X$. Suppose that an even function $f: X \rightarrow Y$ satisfies $f(0)=0$, and (3.1). Then the limit
$Q(x):=\lim _{n} 16^{n} f\left(2^{-n} x\right)$ exists for all $x \in X$ and $Q: X \rightarrow Y$ is a unique quartic function satisfies (1.4) and

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{3} \sum_{i=0}^{\infty} 16^{i} \psi\left(0,2^{-i-1} x\right) \tag{3.8}
\end{equation*}
$$

for all $x \in X$.
Proof. By putting $x=0$ in (3.1), we get

$$
\begin{equation*}
\|3 f(2 y)-48 f(y)\| \leq \psi(0, y) \tag{3.9}
\end{equation*}
$$

Replacing y by $\frac{x}{2}$ in (3.9) and result dividing by 3 to get

$$
\begin{equation*}
\left\|16 f\left(2^{-1} x\right)-f(x)\right\| \leq \frac{1}{3} \psi\left(0,2^{-1} x\right) \tag{3.10}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{2}$ in (3.10) it follows that

$$
\begin{equation*}
\left\|16 f\left(4^{-1} x\right)-f\left(2^{-1} x\right)\right\| \leq \frac{1}{3} \psi\left(0,2^{-2} x\right) \tag{3.11}
\end{equation*}
$$

Combining (3.10) and (3.11) by use of the triangle inequality to obtain

$$
\begin{equation*}
\left\|16^{2} f\left(4^{-1} x\right)-f(x)\right\| \leq \frac{1}{3}\left(\frac{\psi\left(0,2^{-2} x\right)}{16}+\psi\left(0,2^{-1} x\right)\right) \tag{3.12}
\end{equation*}
$$

By induction on $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\left\|16^{n} f\left(2^{-n} x\right)-f(x)\right\| \leq \frac{1}{3} \sum_{i=0}^{n-1} 16^{i} \psi\left(0,2^{-i-1} x\right) \tag{3.13}
\end{equation*}
$$

Multiplying (3.13) by 16^{m} and replacing x by $2^{-m} x$ to obtain

$$
\begin{aligned}
\left\|16^{m+n} f\left(2^{-m-n} x\right)-16^{m} f\left(2^{-m} x\right)\right\| & =16^{m}\left\|f\left(2^{-n} 2^{-m} x\right)-f\left(2^{-m} x\right)\right\| \\
& \leq \frac{16^{m}}{3} \sum_{i=0}^{n-1} 16^{i} \psi\left(0,2^{-i-1} x\right) \\
& \leq \frac{1}{3} \sum_{i=0}^{\infty} 16^{m+i} \psi\left(0,2^{-i-1} 2^{-m} x\right)
\end{aligned}
$$

for all $x \in X$. By taking the $\lim _{m \rightarrow \infty}$, it follows that $\left\{16^{n} f\left(2^{-n} x\right)\right\}$ is a Cauchy sequence in Y. Since Y is a Banach space, then the sequence $\left\{16^{n} f\left(2^{-n} x\right)\right\}$ converges. Now we define $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n} 16^{n} f\left(2^{-n} x\right)
$$

for all $x \in X$. The rest of proof is similar to the proof of Theorem 3.1.
Theorem 3.3. Let $\psi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\sum \frac{\psi\left(0,2^{i} x\right)}{2^{i}}<\infty \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n} \frac{\psi\left(2^{n} x, 2^{n} y\right)}{2^{n}}=0 \tag{3.15}
\end{equation*}
$$

for all $x, y \in X$. If $f: X \rightarrow Y$ is an odd function such that

$$
\begin{equation*}
\left\|D_{f}(x, y)\right\| \leq \psi(x, y) \tag{3.16}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive function $A: X \rightarrow Y$ satisfies (1.4) and

$$
\|f(x)-A(x)\| \leq \frac{1}{2} \sum_{i=0}^{\infty} \frac{\psi\left(0,2^{i} x\right)}{2^{i}}
$$

for all $x \in X$.
Proof. Setting $x=0$ in (3.16) to get

$$
\begin{equation*}
\|f(2 y)-2 f(y)\| \leq \psi(o, y) \tag{3.17}
\end{equation*}
$$

Replacing y by x in (3.17) and result dividing by 2 , then we have

$$
\begin{equation*}
\left\|\frac{f(2 x)}{2}-f(x)\right\| \leq \frac{1}{2} \psi(0, x) . \tag{3.18}
\end{equation*}
$$

Replacing x by $2 x$ in (3.18) to obtain

$$
\begin{equation*}
\left\|\frac{f(4 x)}{2}-f(2 x)\right\| \leq \frac{1}{2} \psi(0,2 x) . \tag{3.19}
\end{equation*}
$$

Combine (3.18) and (3.19) by use of the triangle inequality to get

$$
\begin{equation*}
\left\|\frac{f(4 x)}{4}-f(x)\right\| \leq \frac{1}{2}\left(\psi(0, x)+\frac{1}{2} \psi(0,2 x)\right) . \tag{3.20}
\end{equation*}
$$

Now we use iterative methods and induction on n to prove our next relation.

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-f(x)\right\| \leq \frac{1}{2} \sum_{i=0}^{n-1} \frac{\psi\left(0,2^{i} x\right)}{2^{i}} \tag{3.21}
\end{equation*}
$$

Dividing (3.21) by 2^{m} and then substituting x by $2^{m} x$, we get

$$
\begin{align*}
\left\|\frac{f\left(2^{m+n} x\right)}{2^{m+n}}-\frac{f\left(2^{m} x\right)}{2^{m}}\right\| & =\frac{1}{2^{m}}\left\|\frac{f\left(2^{n} 2^{m} x\right)}{2^{n}}-f\left(2^{m} x\right)\right\| \\
& \leq \frac{1}{2^{m+1}} \sum_{i=0}^{n-1} \frac{\psi\left(0,2^{i} 2^{m} x\right)}{2^{i}} \\
& \leq \frac{1}{2} \sum_{i=0}^{\infty} \frac{\psi\left(0,2^{i+m} x\right)}{2^{m+i}} \tag{3.22}
\end{align*}
$$

Taking $m \rightarrow \infty$ in (3.22), then the right hand side of the inequality tends to zero. Since Y is a Banach space, then $A(x)=\lim _{n} \frac{f\left(2^{n} x\right)}{2^{n}}$ exits for all $x \in X$. The oddness of f implies that A is odd. On the other hand by (3.15) we have

$$
D_{A}(x, y)=\lim _{n} \frac{1}{2^{n}}\left\|D_{f}\left(2^{n} x, 2^{n} y\right)\right\| \leq \lim _{n} \frac{\psi\left(2^{n} x, 2^{n} y\right)}{2^{n}}=0
$$

Hence by Theorem 1.2, A is additive function. The rest of the proof is similar to the proof of Theorem 3.1.

Theorem 3.4. Let $\psi: X \times X \rightarrow[0, \infty)$ be a function satisfies

$$
\sum_{i=0}^{\infty} 2^{i} \psi\left(0,2^{-i-1} x\right)<\infty
$$

for all $x \in X$ and $\lim 2^{n} \psi\left(2^{-n} x, 2^{-n} y\right)=0$ for all $x, y \in X$. Suppose that an odd function $f: X \rightarrow Y$ satisfies (3.1). Then the limit $A(x):=\lim _{n} 2^{n} f\left(2^{-n} x\right)$ exists for all $x \in X$ and $A: X \rightarrow Y$ is a unique additive function satisfying (1.4), and

$$
\|f(x)-A(x)\| \leq \sum_{i=0}^{\infty} 2^{i} \psi\left(0,2^{-i-1} x\right)
$$

for all $x \in X$.
Proof. It is similar to the proof of Theorem 3.3.
Theorem 3.5. Let $\psi: X \times X \rightarrow Y$ be a function such that

$$
\sum_{i=o}^{\infty} \frac{\psi\left(0,2^{i} x\right)}{2^{i}} \leq \infty \quad \text { and } \quad \lim _{n} \frac{\psi\left(2^{n} x, 2^{n} x\right)}{2^{n}}=0
$$

for all $x \in X$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D_{f}(x, y)\right\| \leq \psi(x, y)
$$

for all $x, y \in X$, and $f(0)=0$. Then there exist a unique quartic function $Q: X \rightarrow Y$ and a unique additive function $A: X \rightarrow Y$ satisfying (1.4) and

$$
\begin{align*}
\|f(x)-Q(x)-A(x)\| \leq \frac{1}{48}[& \sum_{i=0}^{\infty}\left(\frac{\psi\left(0,2^{i} x\right)+\psi\left(0,-2^{i} x\right)}{2 \times 16^{i}}\right. \\
& \left.\left.+\frac{12\left(\psi\left(0,2^{i} x\right)+\psi\left(0,-2^{i} x\right)\right)}{2^{i}}\right)\right] \tag{3.23}
\end{align*}
$$

for all $x, y \in X$.
Proof. We have

$$
\left\|D_{f_{e}}(x, y)\right\| \leq \frac{1}{2}[\psi(x, y)+\psi(-x,-y)]
$$

for all $x, y \in X$. Since $f_{e}(0)=0$ and f_{e} is and even function, then by Theorem 3.1, there exists a unique quartic function $Q: x \rightarrow Y$ satisfying

$$
\begin{equation*}
\left\|f_{e}(x)-Q(x)\right\| \leq \frac{1}{48} \sum_{i=0}^{\infty} \frac{\psi\left(0,2^{i} x\right)+\psi\left(0,-2^{i} x\right)}{2 \times 16^{i}} \tag{3.24}
\end{equation*}
$$

for all $x \in X$. On the other hand f_{0} is odd function and

$$
\left\|D_{f_{0}}(x, y)\right\| \leq \frac{1}{2}[\psi(x, y)+\psi(-x,-y)]
$$

for all $x, y \in X$. Then by Theorem 3.3, there exists a unique additive function $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f_{0}(x)-A(x)\right\| \leq \frac{1}{2} \sum_{i=0}^{\infty} \frac{\psi\left(0,2^{i} x\right)+\psi\left(0,-2^{i} x\right)}{2 \times 2^{i}} \tag{3.25}
\end{equation*}
$$

for all $x \in X$. Combining (3.24) and (3.25) to obtain (3.23). This completes the proof of theorem.

By Theorem 3.5, we are going to investigate the Hyers-Ulam-Rassias stability problem for functional equation (1.4).

Corollary 3.6. Let $\theta \geq 0, P<1$. Suppose $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D_{f}(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$ and $f(0)=0$. Then there exists a unique quartic function $Q: X \rightarrow Y$ and a unique additive function $A: X \rightarrow Y$ satisfying (1.4), and

$$
\|f(x)-Q(x)-A(x)\| \leq \frac{\theta}{48}\|x\|^{p}\left(\frac{16}{16-2^{p}}+\frac{96}{1-2^{p-1}}\right)
$$

for all $x \in X$.
By Corollary 3.6, we solve the following Hyers-Ulam stability problem for functional equation (1.4).

Corollary 3.7. Let ϵ be a positive real number, and let $f: X \rightarrow Y$ be a function satisfies

$$
\left\|D_{f}(x, y)\right\| \leq \epsilon
$$

for all $x, y \in X$. Then there exist a unique quartic function $Q: X \rightarrow Y$ and a unique additive function $A: X \rightarrow Y$ satisfying (1.4), and

$$
\|f(x)-Q(x)-A(x)\| \leq \frac{362}{45} \epsilon
$$

for all $x \in X$.
By applying Theorems 3.2 and 3.4, we have the following theorem.

Theorem 3.8. Let $\psi: X \times X \rightarrow Y$ be a function such that

$$
\sum_{i=o}^{\infty} 16^{i} \psi\left(0,2^{-i-1} x\right) \leq \infty \quad \text { and } \quad \lim _{n} 16^{n} \psi\left(2^{n} x, 2^{n} x\right)=0
$$

for all $x \in X$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D_{f}(x, y)\right\| \leq \psi(x, y)
$$

for all $x, y \in X$ and $f(0)=0$. Then there exist a unique quartic function $Q: X \rightarrow Y$ and a unique additive function $A: X \rightarrow Y$ satisfying (1.4), and
$\|f(x)-Q(x)-A(x)\| \leq \sum_{i=0}^{\infty}\left[\left(\frac{16^{i}}{3}+2^{i}\right)\left(\frac{\psi\left(0,2^{-i-1} x\right)+\psi\left(0,-2^{-i-1} x\right)}{2}\right)\right]$
for all $x, y \in X$.
Corollary 3.9. Let $\theta \geq 0, P>4$. Suppose $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D_{f}(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$, and $f(0)=0$. Then there exist a unique quartic function $Q: X \rightarrow Y$ and a unique additive function $A: X \rightarrow Y$ satisfying (1.4), and

$$
\|f(x)-Q(x)-A(x)\| \leq \frac{\theta}{3 \times 2^{p}}\|x\|^{p}\left(\frac{1}{1-2^{4-p}}+\frac{1}{1-2^{1-p}}\right)
$$

for all $x \in X$.

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
[2] L. Cădariu, Fixed points in generalized metric space and the stability of a quartic functional equation, Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz. 50(64) (2005), no. 2, 25-34.
[3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86.
[4] J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math. Soc. 40 (2003), no. 4, 565-576.
[5] M. Eshaghi-Gordji, A. Ebadian, and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abstract and Applied Analysis 2008 (2008), Article ID 801904, 17 pages.
[6] M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, M. S. Moslehian, and S. Zolfaghari, Stability of a mixed type additive, quadratic, cubic and quartic functional equation, To appear.
[7] M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, C. Park, and S. Zolfaghari, Stability of an additive-cubic-quartic functional equation, Submitted.
[8] M. Eshaghi-Gordji, C. Park, and M. Bavand-Savadkouhi, Stability of a quartic type functional equation, Submitted.
[9] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434.
[10] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[11] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), no. 3-4, 217-235.
[12] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser Boston, Inc., Boston, MA, 1998.
[13] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
[14] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory 72 (1993), no. 2, 131-137.
$[15]$, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), no. 2, 219-228.
[16] S. H. Lee, S. M. Im, and I. S. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005), no. 2, 387-394.
[17] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl. 340 (2008), no. 1, 569-574.
[18] C. G. Park, On the stability of the orthogonally quartic functional equation, Bull. Iranian Math. Soc. 31 (2005), no. 1, 63-70.
[19] W. G. Park and J. H. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Anal. 62 (2005), no. 4, 643-654.
[20] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, J. Indian Math. Soc. (N.S.) 67 (2000), no. 1-4, 169-178.
[21] , Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) (1999), no. 2, 243-252.
[22] Th. M. Rassias, Functional Equations and Inequalities, Mathematics and its Applications, 518. Kluwer Academic Publishers, Dordrecht, 2000.
[23] , On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130.
[24] , On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284.
[25] , On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[26] K. Ravi and M. Arunkumar, Hyers-Ulam-Rassias stability of a quartic functional equation, Int. J. Pure Appl. Math. 34 (2007), no. 2, 247-260.
[27] E. Thandapani, K. Ravi, and M. Arunkumar, On the solution of the generalized quartic functional equation, Far East J. Appl. Math. 24 (2006), no. 3, 297-312.
[28] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley \& Sons, Inc., New York 1964.

Department of Mathematics
Semnan University
P. O. Box 35195-363, Semnan, Iran

E-mail address: maj_ess@yahoo.com

