Abstract
Recently most parking control systems provide customers with various services, but most of the services are just the extension of parking spaces, automatic parking control system and so on. It is essential to use the satisfaction degree as the extent that customer are satisfied with parking control system to improve the quality of the system services and diversify the system services. The degree of satisfaction is different from customer to customer in same condition and can be represented as linguistic variables. In this paper, we present therefore a technique that quantify how much customer are satisfied with parking control system and fuzzy inference system architecture as a solution that can help us to make a efficient decision for these parking problems. In this architecture, inference engine using fuzzy logic compares context data with the rules in the fuzzy rule-based system, gets the sub-results, aggregates them and defuzzifies the aggregated result using MATLAB application programming to obtain crisp value. Fuzzy inference system architecture presented in this paper, can be used as a efficient method to analyze the satisfaction degree which is represented as fuzzy linguistic variables by human emotion. And it can be used to improve the satisfaction degree of not only parking system but also other service systems of various domains.
최근 대부분의 주차관리 시스템들은 고객들에게 다양한 서비스를 제공하고 있지만, 그 서비스들의 대부분은 주차 공간의 확장 및 자동 주차 관제시스템 등 극히 제한적이다. 고객들에게 주차 관리 서비스의 질을 한 층 더 높이고 다양화하기 위해서는 고객이 그 시스템에 대해서 어느 정도 만족하는지를 고려하는 것은 필수적이라 할 수 있다. 같은 조건하에서도 고객들마다 만족도는 다를 뿐만 아니라 애매한 언어로 표현될 수 있다. 따라서 본 연구에서는 고객들이 어느 정도로 주차 관리시스템에 대해서만족하는지를퍼지변수로정량화하는방법과주차관리시스템의제반문제점들에대해서 효율적인 결정을 내릴 수 있는 퍼지 추론 시스템 구조를 제안한다. 이러한 구조 하에서 퍼지논리를 이용한 추론엔진은 퍼지 지식베이스의 규칙과 상황 데이터를 비교 하고, 중간 결과를 얻어 통합하고, 역퍼지화 과정을 거쳐 최종 결과 값을 MATLAB 프로그램을 이용하여 얻어낸다. 본 연구에서 제안한 퍼지 추론 시스템 구조는 사람의 감정과 같이 애매하게 표현될 수 있는 경우에 고객의 만족도를 효율적으로 분석할 수 있다. 이 구조는 주차장 고객만족도 뿐만 아니라 도메인이 다른 다양한 서비스 분야 등의 고객만족도를 분석하고 개선하기 위한 방법에도 효율적으로 활용할 수 있을 것이다.