DOI QR코드

DOI QR Code

A Robot Coverage Algorithm Integrated with SLAM for Unknown Environments

미지의 환경에서 동작하는 SLAM 기반의 로봇 커버리지 알고리즘

  • 박정규 (홍익대학교 컴퓨터공학과) ;
  • 전흥석 (건국대학교 컴퓨터응용과학부) ;
  • 노삼혁 (홍익대학교 정보컴퓨터공학부)
  • Received : 2009.11.26
  • Accepted : 2010.01.26
  • Published : 2010.01.31

Abstract

An autonomous robot must have a global workspace map in order to cover the complete workspace. However, most previous coverage algorithms assume that they have a grid workspace map that is to be covered before running the task. For this reason, most coverage algorithms can not be applied to complete coverage tasks in unknown environments. An autonomous robot has to build a workspace map by itself for complete coverage in unknown environments. Thus, we propose a new DmaxCoverage algorithm that allows a robot to carry out a complete coverage task in unknown environments. This algorithm integrates a SLAM algorithm for simultaneous workspace map building. Experimentally, we verify that DmaxCoverage algorithm is more efficient than previous algorithms.

로봇이 동작하는 환경을 완벽하게 커버리지 하기 위해서는 전체환경 지도를 가지고 있어야 한다. 그러나 대부분의 기존 커버리지 알고리즘은 로봇이 동작하기 전 사전에 생성된 지도가 있어야 동작 한다. 이런 이유로 기존의 커버리지 알고리즘은 미지의 환경에 바로 적용할 수 없는 문제를 가지고 있다. 미지의 환경에서 로봇이 모든 영역을 커버리지 하기위해서는 로봇스스로 환경 지도를 생성할 수 있어야한다. 본 논문에서는 SLAM 알고리즘을 통합하여 미지의 환경에서 로봇이 환경 지도를 생성하며 생성된 지도를 기반으로 커버리지를 수행하는 DmaxCoverage 알고리즘을 제안한다. 시뮬레이션 실험을 통해서 DmaxCoverage 알고리즘이 기존의 커버리지 알고리즘에 비해서 효율적임을 증명하였다.

Keywords

References

  1. R. D. Schraft, M. Hagele, and H. Volz, "Service robots: the appropriate level of automation and the role of users/operators in the task execution," In Proceedings of the International Conference Systems, Man, and Cybernetics, Vol. 4, pp.163-169, Le Touquet, France, Oct. 1993.
  2. R. N. Carvalho, H. A. Vidal, P. Vieira and M. I. Ribeiro, "Complete Coverage Path Planning and Guidance for Cleaning Robots," In Proceedings of the IEEE International Symposium on Industrial Electronics, pp.677-682, Guimaraes, Portugal, Jul. 1997.
  3. S. H. Yoon, S. H. Park, B. J. Choi, and Y. J. Lee, "Path Planning for Cleaning Robots: A Graph Model Approach," In Proceedings of the International Conference on Control, Automation and Systems, pp. 2861-2864, Cheju, Korea, Oct. 2001.
  4. S. C. Wong and B. A. MacDonald, "A topological coverage algorithm for mobile robots," In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2, pp. 1685-1690, Las Vegas, U.S.A., Oct. 2003.
  5. N. Agmon, M. Hozon, and G. A. Kaminka, "Constructing Spanning Trees for Efficient Multi-Robot Coverage," In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1698-1703, Florida, U.S.A., May 2006
  6. J. Jones, "Robots at the Tipping Point: The Road to the iRobot Roomba," IEEE Robotics and Automation Magazine, 2006.
  7. R. A. Jarvis and J. C. Byrne, "Robot Navigation: Touching, Seeing and Knowing," In Proceedings of the Australian Conference on Artificial Intelligence, Nov. 1986.
  8. H. Choset and P. Pignon, "Coverage Path Planning: the Boustrophedon Cellular Decomposition," In Proceedings of the International Conference on Field and Service Robotics, Canberra, Australia, Dec. 1997.
  9. A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S. Yuta, "Planning Paths of Complete Coverage of an Unstructured Environment by a Mobile Robot," In Proceedings of the International Conference on Advanced Robotics, pp.533-538, Tokyo, Japan, Nov. 1993.
  10. A. Zelinsky, "Using path transforms to guide the search for findpath in 2D," International Journal of Robotics Research, Vol. 13(4), pp. 315-325, Aug. 1994. https://doi.org/10.1177/027836499401300403
  11. J. S. Oh, Y. H. Choi, J. B. Park, and Y. F. Zheng, "Complete Coverage Navigation of Cleaning Robots Using Triangular-Cell-Based Map," IEEE Transactions on Industrial Electronics, Vol. 51(3), pp. 718-726, Jun. 2004. https://doi.org/10.1109/TIE.2004.825197
  12. S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte. "A New Approach for Filtering Nonlinear Systems," In Proceedings of the American Control Conference, Vol. 3, pp. 1628-1632, Seattle, WA, Jun. 1995.
  13. D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, "Bayesian Filtering for Location Estimation," IEEE Pervasive Computing, Vol. 2, No. 3, pp. 24-33, Jul.-Sep. 2003 https://doi.org/10.1109/MPRV.2003.1228524
  14. D. Fox, W. Burgard, and S. Thrun, "Active Markov Localization for Mobile Robots," Robotics and Autonomous Systems, Vol. 25, No. 3-4, pp. 195-207, Nov. 1998 https://doi.org/10.1016/S0921-8890(98)00049-9
  15. S. Thrun, D. Fox, W. Burgard, and F. Dellaert, "Robust Monte Carlo Localization for Mobile Robots," In Proceedings of the National Conference on Artificial Intelligence, Vol. 128, No. 1-2, pp. 99-141, May, 2000.
  16. G. Dissanayake, P. Newman, H. F. Durrant-Whyte, S. Clark, and M. Csobra, "A Solution to the Simultaneous Localisation and Mapping (SLAM) Problem," IEEE Transactions on Robotics and Automation, Vol. 17, pp.229-241, 2001. https://doi.org/10.1109/70.938381
  17. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem," In Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593-598, Alberta, Canada, Jul.-Aug. 2002.
  18. I. Stewart, "Squaring the Square," Scientific American, Vol. 277, pp. 94-96, Jul. 1997.
  19. U. Feige, "A Threshold of ln n for Approximating Set Cover," Journal of the ACM (JACM), Vol. 45, No. 4, pp.634-652, Jul. 1998. https://doi.org/10.1145/285055.285059
  20. The Player Project, http://playerstage.sourceforge.net/

Cited by

  1. 미지의 환경에서 하이브리드 맵을 활용하는 모바일 로봇의 탐색 vol.18, pp.4, 2010, https://doi.org/10.9708/jksci.2013.18.4.027