사용자 인증시스템의 인증결과 예측을 위한 바이오정보의 품질평가기법

A Quality Assessment Method of Biometrics for Estimating Authentication Result in User Authentication System

  • 김애영 (이화여자대학교 컴퓨터공학과) ;
  • 이상호 (이화여자대학교 컴퓨터공학과)
  • 발행 : 2010.02.15

초록

본 논문에서는 사용자 인증시스템에서 인식결과에 대한 예측이 가능한 품질평가모델을 설계하고 분석한다. 제안하는 품질평가기법은 다중고유얼굴 정보에 T-검정과 같은 소표본 분석법을 적용하여 CIMR(Confidence Interval Matching Ratio)이라는 품질 값이 결과로 나타나도록 설계하였으며, 이 CIMR 기반의 품질평가기법을 이용하여 서로 다른 바이오정보간의 차별성이 잘 나타나는지 향후 보편화될 멀티바이오정보 환경을 고려하여 실험하였다. 또한 획득한 바이오정보의 인증결과에 대한 예측가능성 실험은 T-검정기반의 CIMR에 내포되어있는 평균 $\bar{X}$ 와 분산 $s^2$을 이용하였으며, 사용자인증 결과에 대한 예측은 최대 88%정도의 정확도를 보인다.

In this paper, we propose a quality assessment method of biometrics for estimating an authentication result in an user authentication system. The proposed quality assessment method is designed to compute a quality score called CIMR (Confidence Interval Matching Ratio) as a result by small-sample analysis like T-test. We use the C/MR-based quality assessment method for testing how to well draw a distinction between various biometrics in a multimodal biometric system. We also test a predictability for authentication results of obtained biometrics using the mean $\bar{X}$ and the variance $s^2$ in T-test-based CIMR. As a result, we achieved the maximum 88% accuracy for estimation of user authentication results.

키워드

참고문헌

  1. Y. Chen, S. Dass, and A. Jain, "Fingerprint quality indices for predicting authentication performance," in Proc. of Audio-and Video-based Biometric Person Authentication, pp.160-170, 2005.
  2. P. Grother and E. Tabassi, "Performance of biometric quality measures," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, no.4, pp.531-543, 2007. https://doi.org/10.1109/TPAMI.2007.1019
  3. A. Adler and T. Dembinsky, "Human vs. automatic measurement of biometric sample quality," in Proc. Canadian Conf. on Computer and Electrical Engineering, 2006.
  4. K. Kryszczuk and A. Drygajlo, "Improving classification with class-independent quality measures: Q-stack in face verification," in Proc. of the 2nd Int. Conf. on Biometric ICB'07, 2007.
  5. K. Kryszczu and A. Drygajlo, "What do quality measures predict in biometrics?," in Proc. of the 16th European Conf. on Signal Processing EUSIPCO 2008, 2008.
  6. R. Walpole, R. Myers, and S. Myers, Probability and Statistics for Engineers and Scientists. Pearson Education, 7th edition, pp.237, 2002
  7. Student(William Sealy Gosset), "The Probable error of a mean," Biometrika, vol.6, pp.1-25, 1908. https://doi.org/10.1093/biomet/6.1.1
  8. M. Turk and S. Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, vol.3, no.1, pp.71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71