초록
본 논문에서는 사용자 인증시스템에서 인식결과에 대한 예측이 가능한 품질평가모델을 설계하고 분석한다. 제안하는 품질평가기법은 다중고유얼굴 정보에 T-검정과 같은 소표본 분석법을 적용하여 CIMR(Confidence Interval Matching Ratio)이라는 품질 값이 결과로 나타나도록 설계하였으며, 이 CIMR 기반의 품질평가기법을 이용하여 서로 다른 바이오정보간의 차별성이 잘 나타나는지 향후 보편화될 멀티바이오정보 환경을 고려하여 실험하였다. 또한 획득한 바이오정보의 인증결과에 대한 예측가능성 실험은 T-검정기반의 CIMR에 내포되어있는 평균 $\bar{X}$ 와 분산 $s^2$을 이용하였으며, 사용자인증 결과에 대한 예측은 최대 88%정도의 정확도를 보인다.
In this paper, we propose a quality assessment method of biometrics for estimating an authentication result in an user authentication system. The proposed quality assessment method is designed to compute a quality score called CIMR (Confidence Interval Matching Ratio) as a result by small-sample analysis like T-test. We use the C/MR-based quality assessment method for testing how to well draw a distinction between various biometrics in a multimodal biometric system. We also test a predictability for authentication results of obtained biometrics using the mean $\bar{X}$ and the variance $s^2$ in T-test-based CIMR. As a result, we achieved the maximum 88% accuracy for estimation of user authentication results.