References
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.2307/2289864
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion), Bayesian Statistics IV, J.M. Bernardo, et. al., Oxford University Press, Oxford, 35-60.
- Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. https://doi.org/10.2307/2291387
- Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankya, B, 60, 1-18.
- Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: introduction and comparison (with discussion). In Model selection, institute of mathematical statistics lecture notes- monograph series, Vol 38, Ed. P. Lahiri, 135-207, Beachwood Ohio.
- Feltz, C. J. and Miller, G. E. (1996). An asymptotic test for the equality of coefficients of variation from kpopulations. Statistics in Medicine, 15, 647-658. https://doi.org/10.1002/(SICI)1097-0258(19960330)15:6<647::AID-SIM184>3.0.CO;2-P
- Fung, W. K. and Tsang, T. S. (1998). A simulation study comparing tests for the equality of coefficients of variation. Statistics in Medicine, 17, 2003-2014. https://doi.org/10.1002/(SICI)1097-0258(19980915)17:17<2003::AID-SIM889>3.0.CO;2-I
- Gupta, R. C. and Ma, S. (1996). Testing the equality of coefficients of variation in k normal populations. Communications in Statistics-Theory and Methods, 25, 115-132. https://doi.org/10.1080/03610929608831683
- Kang, S. G., Kim, D. H. and Lee, W. D. (2005). Bayesian analysis for the difference of exponential means. Journal of Korean Data & Information Science Society, 16, 1067-1078.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2006). Bayesian one-sided testing for the ratio of Poisson means. Journal of Korean Data & Information Science Society, 17, 619-631.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Bayesian model selection for inverse Gaussian populations with heterogeneity. Journal of Korean Data & Information Science Society, 19, 621-634.
- Kim, D. H., Kang, S. G. and Lee, W. D. (2008). Noninformative priors of the common coefficient of variation in several normal distributions, Unpublished manuscript.
- Lee, H. C., Kang, S. G. and Kim D. H. (2003). Bayesian test for equality of coefficients of variation in the normal distributions. Journal of Korean Data & Information Science Society, 14, 1023-1030.
- Meier, P. (1953). Variance of a weighted mean. Biometrics, 9, 59-73. https://doi.org/10.2307/3001633
- Miller, G. E. (1991). Asymptotic test statistics for coefficients of variation. Communications in Statistics-Theory and Methods, 20, 3351-3363. https://doi.org/10.1080/03610929108830707
- O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society, B, 57, 99-118.
- O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118. https://doi.org/10.1007/BF02564428
- Plesch, W. and Klimpel, P. (2002). Performance evaluation of the CoaguChek S system. Haematologia, 87, 557-559.
- Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society, B, 44, 377-387.
- Tian, L. (2005). Inferences on the common coefficient of variation. Statistics in Medicine, 24, 2213-2220. https://doi.org/10.1002/sim.2088
- Verrill, S. and Johnson, R. (2007). Confidence bounds and hypothesis tests for normal distribution coefficients of variation. Communications in Statistics-Theory and Methods, 36, 2187-2207. https://doi.org/10.1080/03610920701215126