A7)x - YEY

Analysis and Evaluation of DBMS Bulk Data Loading Through Multi-tiered
Architecture for Heterogeneous Systems

Hee-Yuan Tan* - Hyotack Lim**

o oF
= =

o8] FAL B3 e $RE golEHE 440 By 93 DBMSS T80 djydoz dad
of IESI NE £ 9 5dA 25 o2 Hlo]HE A EE d2H o b o] e # o] 2:¢f 4] (insertion)]
= x

ek theFe] dlo]g) A& £3) 71452l DBMSA A st B4 ¥ 29 49175 ¢ B e,
B Lo e g 7450 S B Aol 3 Ael] 25 £ e =2
Q191419 DBMS th& 3 269) Z3hoh i mebch, w042 2Ho) 35S 44 4 A2 5 9= staging Ul°]

¥ o] 22 A} &3} 5}o] B 2| = WS A otalt)

ABSTRACT

Managing the growing number of data generated through various processes requires the aid of Database Management System (DBMS) to
efficiently handle the huge amount of data. These data can be inserted into database in real time or in batch, that come from multiple sources,
including those that are coming from inside and outside of a network. The insertion of large amount of data is commonly done through specific
bulk loading or insertion function supplied by each individual DBMS. In this paper, we analyze and evaluate on handling data bulk loading for
heterogeneous systems that is organised as multi-tiered architecture and compare the result of DBMS bulk loader against program insertion
from a software development perspective. We propose a hybrid solution using staging database that can be easily deployed for enhancing bulk
loading performance compared to insertion by application.

718 E
dloje ol #e] Alz=g (DBMS), B&& £7, o|71F Al2d, be F2
Key word
Database Management System (DBMS), Bulk Loading, Heterogeneous Systems, Multi-tiered Architecture

= AARE X 2009, 10. 05
AFHE R ISR D@ R} AAttE X} 0 2009, 12. 08

=] (=)

*k EA-|1: =13

| AR BN G Y =EA) A48 A1s

I. Introduction

With the growing number of work done using
computerized method in an organization, the data
generated from various processes increase significantly.
For storing data on a smaller scale, a normal flat file or
using spreadsheet might be sufficient for a number of
applications, but once the data grows larger and data need
to be shared between computers, file based storage does
not scale well, and often requires leveraging on database
management system (DBMS) for better handling of data
storage and maintenance. Data in the initial stage come
mainly from user input, and newer data in later stage are
generated from different operations including
computation, extrapolation, aggregation and manipulation
of existing data. These newer generated data can be saved
into another data store for further analysis without needing
a data re-entry from users via bulk data insertion or bulk
loading.

Bulk data loading into database can be carried out
using various approaches, and each approach has its
advantages and disadvantages. Since choice of bulk
loading technique affects the performance of an
application that relies on transferring huge amount of
data, various considerations need to be taken into account
for a software development project. In many client/server
applications for example, users do not commonly access
the data repository directly, but often the data flow
through multiple intermediate layers or multi-tiered
system architecture [1] before reaching to the end user.
Figure 1 shows an example of multi-tiered architecture
commonly found for a web site. Multi-tiered architecture
does not limit to the hardware side of the system, but also
can be defined on the functional level, like multi-tiered
data architecture [2].

Servers that form a multi-tiered architecture do not
necessary be of the same kind (homogeneous) but also can
be comprising of different (heterogeneous) systems.
Having different systems in the whole architecture

168

requites a proper way to facilitate data communication
between them, making the task of bulk data loading a
challenge.

Web Server \\ ‘Application Server /ﬁ;tabase Sewe?\

ASP.NET

PHP

/

Ol 1. g oojde] cETx
Fig. 1 Web based multi-tiered architecture

In this paper, we analyze and evalvate difference
approaches of bulk loading from a software development
perspective. The remaining of the paper is organised as
follow: Section 11 will discuss on the background and
issue pertaining data loading, alongside with analysis of
bulk loading in its simplest form. We evaluate on
performance of bulk Ioading between different systems in
Section Il together with explaining on the function of a
staging database in data loading and how it can aid data
loading for multi-tiered system. In Section IV, we explain
on how to improve performance of bulk loading using
hybrid technique through a prototype bulk data loader that
we have developed, which can be easily applied in
heterogeneous system environment. Experimental result
using our proposed solution will be compared and
evaluated before we conclude our paper and outline our
future work in Section V.

I1. Background

The task of loading large amount of data is commonly
under the purview of database administrator, but as system
architecture becomes more complex, software application

°o|7]F Alxgo A thE 72

Y DBMS t) &% dlojH =99 £4 2 H7}

]

developer is getting more involved in data bulk loading,
especially for accessing and interfacing between different
systems. Applications that insert large amount of data
from an input source to a targeted database in its simplest
form can be summarized as follow:

1. Open input data file

2. Open database connection

3. For each record in data file

4. Insert data into target database
5. Next

6. Close database connection

7. Close input data file

Most widely available DBMS have utility function or
command that supports data bulk loading. Some DBMS
like MySQL for example provides a simple command
LOAD DATA INFILE (3] to achieve bulk insertion by
running it as part of a SQL syntax. Apart from bulk load
operator found in PL/SQL, Oracle contains a utility
function SQL*Loader [4] for loading data using a control
tile, while SQL Server bulk loading can be done using
BULK INSERT syntax in Transact-SQL, bep utility or as
part of database extract, transform, and load (ETL)
utility, such as those provided by SQL Server Integration
Service [5].

The bulk loading function and utility require the
execution to be carried out within the context of the
respective database and some DBMS vendors do not
made available such utility available in multiple systems
that are running on different platform and architecture.
External system in particular does not have access to the
bulk loading function directly for security and
manageability reasons.

DBMS specific bulk loading utilities are optimized for
inserting large amount of data and generally performs
better than a regular INSERT syntax as summarized in
Table 1 from a series of incremental tests using program
insertion and bulk loading utility. The test data used in the

experiment are taken from IMDb Movie List [6]. The
movie list file contains information about the title of the
movie, the year of the movie being released and other
additional information. A total of up to 1,475,891 e takes
are available within the character delimited data file.
Three different database systems were configured as
outlined in Table 2.

A C# bulk loading application program as shown in
Figure 2 using .NET Framework 3.5 library for SQL
Server, MySQL Connector/Net 6.1.3 and Oracle
ODP.NET 2.0 11.1.0.7.20 database drivers supplied by
each database vendor was created to evaluate on the
execution performance. Database bulk loading utility
performs significantly faster in our experiment. Oracle
SQL*Loader able to insert a single record in 0.15ms on
average, which is almost six times as fast from inserting
through the application program. SQL Server and MySQL
bulk show on average 28 times as fast in 0.05ms/record
and 10 times as fast in 0.06ms/record respectively for
bulk inserting through utility and function compared to

direct insertion via application.

1 e 2EY 7|l A Z203 oy
TR A ZH
Table 1. Execution time for bulk loading function and
direct program insertion

Record
- Size

500 025 048s 0.06s 0.70s 0.04s 0.33%
1,000 037s 0.8% 0.11s 144s 0.18s 0.72s
5,000 0.54s 4.38s 0.19 7.34s 025 298s
10,000 0.84s 8.38s 0.34s 1431s | 042s 599
50,000 2.96s 4255 131s 7233 1.86s 30.50s
100,000 547s 8342 255 144.38s 3.62s 71778
500,000 | 2400s | 42178s | 1666s | T2277s | 1846s | 350.36s
1000000 5196 | 81556s | 32.69s | 146433 | 39.is | 618.09s
1475801 66.07s | 1185.80s | 46.89s | 2175928 | 4300s | 86007
Average | 0.1467ms | 0.8577ms | 0.0508ms | 14465ms | 0.059%ms | 0.6435ms

169

I FAREA8 8] =T A4 A1 B

E 2 HAE AN
Table 2. Test environment specification

Processor Intel Pentium 4 3.20 GHz
RAM 512MB

Operating System CentOS 5 Linux Kernel 2.6.18
DBMS Server MySQL 5.4.3-Beta

Processor Intel Pentium 4 2.00 GHz
RAM 1GB

Operating System Windows XP Service Pack 3
DBMS Server SQL Server 2008

Processor Intel Core 2 Duo 2.00 GHz
RAM 2GB

Operating System Windows Vista Service Pack 2
DBMS Server Oracle 11g Release 1

I. Heterogeneous Bulk Loading

Deploying business applications in an organization
often requires interfacing with multiple type of systems for
a seamless end-to-end solution. An external third party or a
different internal system might need to connect and access
the data and supply new data from its system, often
requires data interfacing or translation. The interfacing
process can be carried out using a proprietary middleware
solution or DBMS specific utility to integrate two different
systems together. For software development that needs
implementation within the application, DBMS driver can
be used either using provider specific driver or through
ODBC connection. In this section, we examine on the
performance of application approach to bulk loading using
the same data set outlined in section II, and explain how a
staging database can help to improve overall application

performance.

170

otal time = 4234.375ms

oading from SAL Server to Dracle
ormit point 10000

otal time = 8343 75ms

oading from SAL Server ta Dracle
ornmit point 50000

otal time = 41062.5ms

oading from 5QL Server to Oracle
ornmit point 100000

otal time = 80875ms

nading from 5L Server ta Oracle

g 2. Hlo|E{H|o|A E2l0|H{E ALEEE
ez 249 =23
Fig. 2 Bulk loading program using database driver

3.1 Application Program Loading

Bulk loading application that we have created as shown
in Figure 2 contains a feature to fetch data from a source
DBMS and insert to another target DBMS using DBMS
specific driver for better compatibility and performance.
We call this fetch-insert approach where a data is fetch
from a source and subsequently inserted to another target
destination database. Bulk data loading was executed
using transactional insertion stored procedure. Figure 3
depicts result of four out of nine more significant test
dataset in line chart format using nine different

combinations of DBMS mix.

F 3. Feich-insert &2 AL2St 2|3
' o A
Table 3. Average execution time per record across
different DBMS using fetch-insert method

Oracle 11g 1.0065ms 1.5363ms 0.8507ms
MS SQL
. . 0.7979ms
2008 0.8509ms 0.5995ms
MsyigL 0.8552ms 1.4729ms 0.8467ms

o171 A ~9ol A T2 728 E7 DBMS 14 % tlol8 299 ¥4 2 B2}

Bulk loading across systems (Oracle)
2,500 -
E =gee(rogte =@ MSSQL s MySQL | /
2,000
El
g 1500
w
-3
§ 000
£
500
0
100,000 500,000 1,000,000 1,475,851
Number of Records |
Bulk loading across systems {MS SQL}
1,600
L o SSOL =B Oracle - MySQL P
1,200 e
5
5 ;
& s ATt
., y
F g
T 00
0
100,000 500,000 1,000,000 1475891
Number of Records
Bulk loading across systems {MySQlL)
2,500
| =emriysaL —Oracle mi--MssQL B
2,000 P
s =
8 1500 f’f* i
o
2 %
¢ 1000 -
£ .
s00 =
0 . - .
100,000 500,000 1,000,000 1475891
HNumber of Records

1% 3. Fetch-insert 2HHE Al LT
Hiole] 25
Fig. 3 Data bulk loading using fetch-insert method
across different database systems

Bulk loading to target database using SQL Server 2008
Tequires mote time than the other two DBMS in our test.
Another test of running approximately 3.1 million records
to each DBMS is shown in Table 3 giving similar
outcome. We have included another test for loading data
to the same kind of DBMS but located on a separate

system from the source system for comparison as

displayed in italics in the above table. SQL Server 2008
scores best in our test for data loading using the same
DBMS with about slightly more than half a millisecond to

insert a record.

4. SQL ME{E S3t A el At
Table 4. Execution time for direct insertion through
SQL Server 2008 linked server feature

5572 11.144 299 0.054 959 1918
1,000 10,990 10.990 559 0.051 1,892 1.892
5,000 35,144 11029 | 2919 | 0053 9416 1.883
10000 | 109,387 10989 | 5924 | 0054 | 18640 | 184
50,000 551,492 11030 | 31,786 | 0058 | 93455 1.869

100,000 | 1,098,190 | 10982 | 58736 | 0053 | 186631 | 1866

500000 | 2394487 | 4789 | 275045 | OIS | 941967 | 1884

1000000 | 5219529 | 5220 | 575,678 | 0110 | 1884954 | 1885

1475891 | 7,744,708 | 5247 | 800485 | 0103 | 2778416 | 1883

3.2 Database-to-Database Loading

Commercial DBMS like Oracle and SQL Server
support linking to another DBMS for accessing remote
database within a same session as the current connection.
Oracle database link via heterogeneous service and SQL
Server linked server allow connecting directly to a remote
DBM.S, not necessary from a same kind, and performs
SQL query for Data Manipulation Language (DML) and
Data Definition Language (DDL) depending on the rights
granted for remote user. Linked database provides a
standard avenue for us to access distributed database using
SQL statement from the source server without having to
handle the underlying detail of interfacing with diverse
data source of the destination server. This serves the need
of both heterogeneous system and multi-tier architecture
bulk data loading.

Performance test for linked database was carried out
with result of using SQL Server 2008 linked server is

shown in Table 4. Oracle shows a higher execution time

171

g YA RTINS = A 148 1S

with an average of 9.05ms/record. This is much slower
compared to result of fetch-insert method. MySQL
0.58ms/record fairs better with linked database method
compared to fetch-insert 0.80ms/record.

3.3 Role of Staging Database in Bulk Loading

In developing software application that requires data
bulk loading for heterogeneous system or multi-tiered
system, deploying an intermediate staging database can be
helpful not only to increase performance, but also able to
mitigate compatibility and system configuration issues.
This can be observed from the following scenarios:

@ Data Type Compatibility

DBMS with special data type or different data type
size, for example image data type of SQL Server, and
different maximum value for data type varchar.
(MySQL supports up to 65,535 {3], SQL Server 2008
supports up to 8,000 or 2?1 bytes [5]), the sending
end might not have compatible data type. By staging
the input data, we can perform a conversion or
invoking function that the intermediate system can
support to achieve the data loading.

@ Security & Licensing Constraint
Some target DBMS has licensing or security issue that
do not permit more connections or direct connections
to the DBMS. Staging data in the middle between
source and target allows isolation of target database
from direct interfacing with source. Number of
connections to target database can also be controlled
through staging database while still allowing

connection from source to staging database.

@ Session Timeout
Execution of database query and command might
require a certain amount of processing time. If the
waiting period is longer than the configured timeout
session, the process will be timed out before
completion. This happens especialpenfor web request

where response need to be prompt so that the client

172

session will not timed out. Using a staging database, a
response or an acknowledgement out. return while
the staging database process with the actual

processing.

@ Derived Data. Lookup and Mapping
Insertion of data at target database might require value
derived from existing table or a lookup translation.
Reference code used at the source for example, can be
different from those used in target table. Staging input
data can allow us to perform a mapping operation
prior to final insertion into target database and at the
same time filter off unnecessary data for target
database.

® Staging as Flow Control
In certain implementation of DBMS a subroutine
using script or a small program can be invoked to
carry out preprocessing of data. Loading high volume
of data in a single transaction might overwhelm to
subroutine causing error and inconsistent data. Using
staging database, we can control the insertion to the
target time in a orderly manner, while still permitting

source data from coming in.

IV. Proposed Solution and Analysis

Although insertion using fetch-insert method in
application is simple in implementation and works fairly
well for small input data, it can be generally slow for large
input data and does not scale well for deployment that
relies heavily on data insertion such as application
program that does content aggregation. Instead of fetching
from one source and inserting immediately to the target,
we propose using a staging database as an intermediary to
leverage additional advantages of staging database as

explain in previous section.

o 0% P28 B DBMS U8 Hlol8 299 ¥4 2 B}

Call Shell Command Initiate Fetch -Insert

Buiik Loading Process

Lo-H

Initiate FTP

Call Stored Procedure

—— i ——— - ———— ———— v ———— o ——

% 4. HohE gl JEE
Fig 4. Conceptual diagram of proposed solution

3
Sourcenata Destoaton bata
T B L L 0% et ssavessTe

woms
Catmowie Code 928 L9 i » “ shel Caomard
Pacdre i SmENEY i Dani
Fetescare
Dy

Exteracn

seszaT

g 5 M eotE gHel Java =ZZEENY] 7E
Fig. 5 Prototype Java implementation of proposed
solution

4.1 Design and Implementation

Figure 4 shows the high level concept of our proposed
solution together with a Java prototype implementation of
bulk data loader for heterogeneous and multi-tiered system
shown in Figure 5. Using our proposed solution, an
instance of the program is executed on the source and the
intermediate staging system. The data output from one end
of the program to input to another as shown in Figure 6.
This creates a continuous end-to-end data flow from

source to target destination via intermediate staging

system.

{Staging

NG

a8 6 2t 2ol Yo ta 28H}

Fig. 6 Application output as input to another instance

Input data for bulk loading can be either coming from a
file or result queried from a database. We have included a
listening process into our proposed solution to allow
continuous processing of new incoming data using a
defined interval. For listener to process only newly arrived
data, a status flag or information about processed data in
kept to ensure no duplication of records exist. In addition
to fetch-insert method to load data through application, we
proposed a combine or hybrid of linked database,
command execution for calling DBMS butk loading utility
and FTP transfer of data.

For scenario where linked database is supported, we can
invoke a stored procedure to facilitate bulk loading from
database to database, without involving application fetch
and insert. From our analysis shown in previous section,

database linked method is efficient for loading data from

173

A F YT =EA A4 A3

i

E 5 oi{CHAolM HotE dhHol A7l H|R
Table 5. Source 1o target database via staging database using proposed hybrid solution

500 1,158 750 1,908 3.816 106 406 512 1.024 1,396 2.792
1,00 2,129 1,032 3,161 3.161 217 750 967 0.967 2,194 2.194
5,000 10,190 3,500 13,690 2.738 490 3,219 3,709 0.742 9,981 1.996
10,000 20,420 6,797 27,217 2722 698 6,437 7,135 0.714 20,082 2.008
50,000 100,960 33,640 134,600 2.692 3,042 30,563 33,605 0.672 100,995 2.020
100,000 202,118 67,750 269,868 2.699 6,018 60,422 66,440 0.664 203,428 2.034
500,000 || 1,019,200 | 344,672 | 1,363,872 2.728 29,362 300,875 330,237 0.660 1,033,635 2.067
1,000,000 || 2,094,867 | 703,438 | 2,798,305 2.798 65,715 603,422 669,137 0.669 2,129,168 2.129
1,475,891 | 3,124,606 | 1,204,250 | 4,328,856 2.933 99,907 914,953 | 1,014,860 0.688 3,313,996 2.245
SQL Server to MySQL. implementation in Java. We compared our result against

The optimized DBMS bulk loading utility has
significant advantage over other bulk loading method. We
have included in our proposed solution to allow user to
invoke bulk loading utility through shell command
execution. For input data coming from database, an
additional process of generating input file is included.

DBMS bulk loading utility can be used hand in hand
with FTP data transfer where DBMS utility is not

supported on a certain platform. Input file can be uploaded oo | —&—Proposed ~e—Fetch-insert /'
to an intermediate system that can execute the utility < iz / &
program. For cases where bulk loading utility that cannot E 3‘000 /
support local file in remote system, such as SQL Server g ij / /
bulk loading function does not allowed non-UNC remote 1000 /‘/

file, FTP allows us to transfer the input file to a staging B ““""“/

fetch-insert method based on the test environment outlined
in Table 2. Source DBMS is running Oracle 11g, staging
DBMS is running SQL Server 2008 and our target DBMS
is running MySQL35.4.3 Beta. Staging system is installed
with Filezilla FTP Server 0.9.30 Beta.

Simulation Performance

&

. o . . . £ o & & @ N
location where the utility can support the input file. Using §$ & & ~P‘°Q ‘;ﬁ‘ @9& c;°°g & ‘\‘;@
FIP also allow us to leverage on the benefits of ' A

. Number of records
transferring large file such as file resume.
O 7. fetch-insert &Heinf &bzl dhH 9|

4.2 Experimental Simulation and Result
We have conducted an experiment to evaluate on the
performance of bulk loading using our prototype

174

FEAIZE v
Fig. 7 Comparison of execution time for proposed
solution against fetch-insert method

o1 % A A A e FEE ST DBMS &2 olE 239 #4 2 97

The same data set used in previous sections was
selected as the data to pre-load in our Oracle source
database. Using our prototype program in source
computer, we have selected input from database and the
result is transferred over to staging system using FTP. As
for staging computer, file directory is selected as the
source for input data listening and the data is loaded into
target database using linked database.

Results of the experimental simulation is shown in
Table 5 with a summary in line chart shown in Figure 7.
Using hybrid method in bulk loading data from source to
destination, we are able to achieve a loading rate of
0.756ms/record, compared to 2.921ms/record using
fetch-insert method.

V. Conclusion & Future Work

In this paper, we have discussed issue on bulk data
loading in a multi-tiered architecture environment using
heterogeneous database systems. We have analyzed on the
performance of multiple se syusing different bulk loading
method including application loading, se sybulk loading
utility, linked database loading, and fetch-insert loading.
Also, we have seen how data staging can be useful to
increase performance ogenevercome some issue ofybulk
loading, especiiply for heterogeneous or multi-tiered
system. We have proposed a hybrid solution that leverage
on staging database, which has shown significant
performance increment in bulk loading in a multi-tiered
environment.

More recently, XML formatted file is getting more
common as the standard for modeling data for
heterogeneous system for its platform neutrality and
extensibility, it has garnered a lot of attention in research
circle. As technology that is based on XML is increasing in
popularity, such as XML web service and a steady stream
of DBMS that provides native support for XML, we have
planned our future work to focus on XML as the choice for

data bulk loading for heterogeneous system.

References

{11 BM. Subraya, “Integrated Approach to Web
Performance Testing: A Practitioner’s Guide,” IRM
Press, 2006.

[2] G. Lord, “The Importance of Data Architecture in a
Client/Server Environment”, in Designing a Total
Data Solution: Technology, Implementation, and
Deployment, R. E. Burkey and C. V. Breakfield, e.d,,
pp. 69-80, CRC Press, 2001.

3] MySQL 5.4 Reference Manual, Sun Microsystems,
2009. http://dev.mysql.com/doc/ refman/5.4/enfindex.
html

4] K. Rich et. al, “Part Il : SQL*Loader,” in Oracle
Database Utilities, 11g Release I {11.1), Oracle, Sept.
2007.

5] SQL Server 2008 Books Online, Microsoft, October
2009. http://msdn.microsoft.com/en-us/library/ms
130214.aspx

[6] The Internet Movie Database (IMDb). Retrieved 24
September 2009. Available from : hitp:/fwww.imdb.
comy/interfaces

AAETY

ZI71 9 {Tan Hee Yuan)

200453~2008'3 L] ol Ao} T
Aok A 2, g0l] Az, Butd of A
o] 4

175

e A BN EEA A147 AlLE

2l Z & (Hyotaek Lim)

1988'd T oistw A A e
Z4 (°)84h

, 19923 RFEFHANETY DA

£ g3 24 (F 84D

19973 AU R A FE 83 &Y (D

1988'3~1994'3 F=FHAFAAT L GT ¢

2000%3~2002° Univ. of Minnesota(™)) 7 F&l 383}
A

19943~ A FA WAL HFH 38

*AAEoR: ARHIESD, L2EZTY, 2B

U EH 7, IPv6, 281 o} Z2) A o] A

176

