참고문헌
- Axelsson, K., Johansson, Sven-Erick and Anderson, R. (2002), Stabilization of organic soils by cement and pozzolanic reaction-feasability study, Swedish Deep Stabilization Research Centre, Report 3, 1-51.
- Alwi, A. (2007), Ground improvement on Malaysian peat soils using stabilized peat-column techniques, PhD Thesis, University of Malaya, Malaysia.
- Aiban, S.A. (1994), "A study of sand stabilization in Eastern Saudi Arabia", Eng. Geol., 38, 65-97. https://doi.org/10.1016/0013-7952(94)90025-6
- Al Wahab, R.M. and El-Kedrah, M.M. (1995), "Using fibres to reduce tension cracks and shrink/swell in compacted clays", Proceedings of a Conference on Geoenvironment 2000, Geotechnical Special Publication No. 46, ASCE, New York, 1995, 791-805.
- ASTM International Standards (2004), Standard test method for consolidated undrained triaxial compression test for cohesive soil, ASTM D 4767-04.
- Basha, E.A., Hashim, R., Mahmud, H.B. and Muntobar, A.S. (2005), "Stabilization of residual soil with rice husk ash and cement", Constr. Build. Mater., 19(6), 448-453. https://doi.org/10.1016/j.conbuildmat.2004.08.001
- Bowles, J.E. (1978), Engineering properties of soil and their measurements, McGraw-Hill, USA.
- British Standards Institution (2006), Geotechnical design, Part 2, 2006, BS EN 1997-2: 2006, Eurocode 7.
- Chauhan, M.S., Mittal, S. and Mohanty, B. (2008), "Performance evaluation of silty sand subgrade reinforced with fly ash and fibre", Geotext. Geomembranes, 26(5), 429-435. https://doi.org/10.1016/j.geotexmem.2008.02.001
- Consoli, N.C., Montardo, J.P., Prietto, P.D.M. and Pasa, G.S. (2002), "Engineering behavior of a sand reinforced with plastic waste", J. Geotech. Geoenviron. Eng., 128(6), 462-472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462)
- Consoli, N.C., Prietto, P.D.M. and Ulbrich, L.A. (1998), "Influence of fibre and cement addition on behavior of sandy soil", J. Geotech. Geoenviron. Eng., 124(12), 1211-1214. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211)
- Consoli, N.C., Vendruscolo, M.A., Fonini, A. and Rosa, F.D. (2009), "Fibre reinforcement effects on sand considering a wide cementation range", Geotext. Geomembranes, 27, 196-203. https://doi.org/10.1016/j.geotexmem.2008.11.005
- Consoli, N.C., Vendruscolo, M.A. and Prietto, P.D.M. (2003), "Behavior of plate load tests on soil layers improved with cement and fibre", J. Geotech. Geoenviron. Eng., 129(1), 96-101. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(96)
- Croney, D. and Croney, P. (1998), Design and performance of road pavement, MacGraw-Hill, New York, USA.
- Gray, D.H. and Al-Refeai, T. (1986), "Behavior of fabric versus fibre-reinforced sand", J. Geotech. Eng., 112(8), 804-820. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(804)
- Hebib, S. and Farrell, R.E. (2003), "Some experience on the stabilization of Irish peats", Can. Geotech. J., 40, 107-120. https://doi.org/10.1139/t02-091
- Holtz, R.D. and Kovacs, W.D. (1981), An introduction to geotechnical engineering, Prentice-Hall, New Jersey, USA.
- Huang, J.T. and Airey, D.W. (1998), "Properties of artificially cemented carbonate sand", J. Geotech. Geoenviron. Eng., 124(6), 492-499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492)
- Hunter, R.N. (2000), Asphalt in road construction, Thomas Telford, London, UK.
- Ismail, M.A., Joer, H.A., Sim, W.H. and Randolph, M. (2002), "Effect of cement type on shear behavior of cemented calcareous soil", J. Geotech. Geoenviron. Eng., 128(6), 520-529. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
- Kalantari, B. and Huat, B.B.K. (2009), "Precast stabilized peat columns to reinforce peat soil deposits", Electron. J. Geotech. Eng., 14B.
- Kalantari, B. and Huat, B.B.K. (2008), "Stabilization of peat soil using ordinary Portland cement, polypropylene fibres, and air curing technique", Electron. J. Geotech. Eng., 13J.
- Kolias, S., Kasselouri-Rigopoulou, V. and Karahalios, A. (2005), "Stabilisation of clayey soils with high calcium fly ash and cement", Cement Concrete Compos., 27(2), 301-313. https://doi.org/10.1016/j.cemconcomp.2004.02.019
- Krishnaswamy, N.R. and Isaac, N.T. (1994), "Liquefaction potential of reinforced sand", Geotext. Geomembranes, 13(1), 23-41. https://doi.org/10.1016/0266-1144(94)90055-8
- Kumar, P. and Singh, S.P. (2008), "Fiber-reinforced fly ash subbases in rural roads", J. Transp. Eng., 134(4), 171-180. https://doi.org/10.1061/(ASCE)0733-947X(2008)134:4(171)
- Kumar, S. and Tabor, E. (2003), "Strength characteristics of silty clay reinforced with randomly oriented nylon fibres", Electron. J. Geotech. Eng., 8B.
- Ladd, R.S. (1978), "Preparing test specimen using under compaction", Geotech. Test. J., 1, 16-23. https://doi.org/10.1520/GTJ10364J
- Leelavathamma, B., Mini, K.M. and Pandian, N.S. (2005), "California bearing ratio behavior of soil-stabilized class F fly ash", J. Test. Eval., 33(6), 406-410.
- Maher, M.H. and Ho, Y.C. (1993), "Behavior of fibre-reinforced cement sand under static and cyclic loads", Geotech. Test. J., 16(3), 330-338. https://doi.org/10.1520/GTJ10054J
- Munro, R. (2004), Dealing with bearing capacity problems on low volume roads constructed on peat, The Highland Council, Transport, Environmental & Community Service, Scotland, 1-136.
- Murthy, V.N.S. (2003), Geotechnical engineering, principles and practices of soil mechanics and foundation engineering, Marcel Dekker, New York, USA.
- Nataraj, M.S. and McManis, K.L. (1997), "Strength and deformation properties of soils reinforced with fibrillated fibres", Geosynth. Int., 4(1), 65-79. https://doi.org/10.1680/gein.4.0089
- Neville, A.M. (1999), Properties of concrete, Longman, Malaysia.
- O'Mahony, M.J., Ueberschaer, A., Owende, P.M.O. and Ward, S.M. (2000), "Bearing capacity of forest access roads built on peat soils", J. Terramechanics, 37(3), 127-138. https://doi.org/10.1016/S0022-4898(00)00003-3
- Park, T. and Tan, S.A. (2005), "Enhanced performance of reinforced soil walls by the inclusion of short fibre", Geotext. Geomembranes, 23, 348-361. https://doi.org/10.1016/j.geotexmem.2004.12.002
- Prabakar, J. and Sridhar, R.S. (2002), "Effect of random inclusion of sisal fibre on strength behaviour of soil", Constr. Build. Mater., 16(2), 123-131. https://doi.org/10.1016/S0950-0618(02)00008-9
- Ramesh, H.N., Manoj Krishna, K.V. and Mamatha, H.V. (2010), "Compaction and strength behavior of lime-coir fiber treated black cotton soil", Geomech. Eng., 2(1), 19-28. https://doi.org/10.12989/gae.2010.2.1.019
- Ranjan, G., Vasan, R.M. and Charan, H.D. (1996), "Probabilistic analysis of randomly distributed fibre-reinforced soil", J. Geotech. Eng., 122(6), 419-426. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(419)
- Sika Fibres. (2005), Polypropylene fibres, technical data sheet, 3rd edn, Version No. 0010, Sika Fibre, Malaysia.
- Tang, C., Shi, B., Gao, W, Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fibre reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25, 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002
- Timuran Engineering (2007), Steel fibres reinforcements, Data Sheet, No. 503626-k, Selangor Malaysia.
- Tremblay, H., Duchesne, J., Locat, J. and Leroueil, S. (2002), "Influence of the nature of organic compounds on fine soil stabilization with cement", Can. Geotech. J., 39, 535-546. https://doi.org/10.1139/t02-002
- Wong, L.S., Hashim, R. and Ali, F.H. (2008), "Strength and permeability of stabilised peat soil", J. Appl. Sci., 8(17), 1-5. https://doi.org/10.3923/jas.2008.1.13
- Woods, K.B., Berry, D.S. and Goetz, W.H. (1960), Highway engineering handbook, McGraw-Hill, New York, USA.
- Yetimoglu, T. and Salbas, O. (2003), "A study on shear strength of sands reinforced with randomly distributed discrete fibres", Geotext. Geomembranes, 21, 103-110. https://doi.org/10.1016/S0266-1144(03)00003-7
- Yetimoglu, T., Inanir, M. and Inanir, O.E. (2005), "A study on bearing capacity of randomly distributed fiberreinforced sand fills overlying soft clay", Geotext. Geomembranes, 23(2), 174-183. https://doi.org/10.1016/j.geotexmem.2004.09.004
피인용 문헌
- Compressibility behaviour of peat reinforced with precast stabilized peat columns and FEM analysis vol.9, pp.4, 2015, https://doi.org/10.12989/gae.2015.9.4.415
- Strength and compressibility characteristics of peat stabilized with sand columns vol.5, pp.6, 2013, https://doi.org/10.12989/gae.2013.5.6.575
- Shear Strength Parameters of Improved Peat by Chemical Stabilizer vol.31, pp.4, 2013, https://doi.org/10.1007/s10706-013-9635-5
- Strength evaluation of air cured, cement treated peat with blast furnace slag vol.3, pp.3, 2011, https://doi.org/10.12989/gae.2011.3.3.207
- Immediate and long-term effects of lime and wheat straw on consistency characteristics of clayey soil vol.16, pp.3, 2018, https://doi.org/10.12989/gae.2018.16.3.217
- Strength and mechanical behaviour of coir reinforced lime stabilized soil vol.16, pp.6, 2018, https://doi.org/10.12989/gae.2018.16.6.627
- Consolidation settlement of soil foundations containing organic matters subjected to embankment load vol.24, pp.1, 2010, https://doi.org/10.12989/gae.2021.24.1.043
- Comparative Strength of Fibre Reinforced Peat and Clayey-Silt by Using Shredded Scrap-Tire vol.1030, pp.None, 2021, https://doi.org/10.4028/www.scientific.net/msf.1030.124
- Physio-Chemical Properties, Consolidation, and Stabilization of Tropical Peat Soil Using Traditional Soil Additives - A State of the Art Literature Review vol.25, pp.10, 2021, https://doi.org/10.1007/s12205-021-1247-7
- The Implementation of Industrial Byproduct in Malaysian Peat Improvement: A Sustainable Soil Stabilization Approach vol.14, pp.23, 2010, https://doi.org/10.3390/ma14237315