References
- Ang, A.H.S. and Tang, W.H. (1984), Probability concepts in engineering planning and design, Vol. II - Decision, risk and reliability, New York, John Wiley and Sons.
- Attewell, P.B. (1977), "Ground movements caused by tunneling in soil", Proc. Conf. on large ground movements and structures, Pentech Press, London, 812-948.
- Caudill, M. and Butler, C. (1991), Naturally intelligent systems, Cambridge MA, MIT Press.
- Cornell, C.A. (1969), "A probability-based structural code", ACI J., 66(12), 974-985.
- Ditlevsen, O. (1981), Uncertainty modeling: with applications to multidimensional civil engineering systems, New York, McGraw-Hill.
- Goh, A.T.C. and Kulhawy, F.H. (2003), "Neural network approach to model the limit state surface for reliability analysis", Can. Geotech. J., 40(6), 1235-1244. https://doi.org/10.1139/t03-056
- Goh, A.T.C. and Kulhawy, F.H. (2005), "Reliability assessment of serviceability performance of braced retaining walls using a neural network approach", Int. J. Numer. Anal. Met., 29(6), 627-642. https://doi.org/10.1002/nag.432
- Hasofer, A.M. and Lind, N. (1974), "An exact and invariant first-order reliability format", J. Eng. Mech. - ASCE, 100(1), 111-121.
- Hornik, K. (1991), "Approximation capabilities of multilayer feedforward networks", Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T
- Hulme, T.W. and Burchell, A.J. (1999), "Tunneling projects in Singapore: an overview", Tunn. Undergr. Sp. Tech., 14(4), 409-418. https://doi.org/10.1016/S0886-7798(00)00004-3
- Izumi, C., Khatri, N.N., Norrish, A. and Davies, R. (2000), "Stability and settlement due to bored tunneling for LTA, NEL", Proc. Int. Conf. on tunnels and underground structures, Singapore, 555-560.
- Juang, C.H., Fang, S.Y. and Khor, E.H. (2006), "First-order reliability method for probabilistic liquefaction triggering analysis using CPT", J. Geotech. Geoenviron. Eng. - ASCE, 132(3), 337-350. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(337)
- Kim, C.Y., Bae, G.J., Hong, S.W., Park, C.H., Moon, H.K. and Shin, H.S. (2001), "Neural network based prediction of ground settlements due to tunneling", Comput. Geotech., 28(6-7), 517-547. https://doi.org/10.1016/S0266-352X(01)00011-8
- Low, B.K. and Tang, W.H. (2004), "Reliability analysis using object-oriented constrained optimization", Struct. Safety, 26(1), 69-89. https://doi.org/10.1016/S0167-4730(03)00023-7
- Mair, R.J., Taylor, R.N. and Bracegirdle, A. (1993), "Subsurface settlement profiles above tunnels in clays", Geotech., 43(2), 315-320. https://doi.org/10.1680/geot.1993.43.2.315
- Melchers, R.E. (1987), Structural reliability: analysis and prediction, Chichester UK, Ellis Horwood Ltd.
- Rowe, R.K. and Lee, K.M. (1992), "An evaluation of simplified techniques for estimating three dimensional undrained ground movements due to tunneling in soft soils", Can. Geotech. J., 29, 39-52. https://doi.org/10.1139/t92-005
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning internal representation by error propagation", Parallel distributed processing, Edited by D.E. Rumelhart, J.L. McClelland, Cambridge MA, MIT Press, 318- 362.
- Santos, O.J. Jr. and Celestino, T.B. (2008), "Artificial neural networks of Sao Paulo subway tunnel settlement data", Tunn. Undergr. Sp. Tech., 23, 481-491. https://doi.org/10.1016/j.tust.2007.07.002
- Sharma, J.S., Chu, J. and Zhao, J. (1999), "Geological and geotechnical features of Singapore: an overview", Tunn. Undergr. Sp. Tech., 14(4), 419-431. https://doi.org/10.1016/S0886-7798(00)00005-5
- Shi, J., Ortigao, J.A.R. and Bai, J. (1998), "Modular neural networks for predicting settlements during tunneling", J. Geotech. Geoenviron. Eng. - ASCE, 124(5), 389-395. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(389)
- Shinozuka, M. (1983), "Basic analysis of structural safety", J. Struct. Div. - ASCE, 3(109), 721-740.
- Shirlaw, N., Ong, J.C.W., Rosser, H.B., Tan, C.G., Osborne, N.H. and Heslop, P.E. (2003), "Local settlements and sinkholes due to EPB tunneling", Proc. ICE, Geotech. Eng., 156(GE4), 193-211. https://doi.org/10.1680/geng.2003.156.4.193
- Suwansawat, S. and Einstein, H.H. (2008), "Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling", Tunn. Undergr. Sp. Tech., 21(2), 133-150.
- Uriel, A.O. and Sagaseta, C. (1989), "Selection of design parameters for underground construction", Proc. 12th ICSMFE, Rio de Janeiro, Brazil, Balkema 4, 2521-2551.
Cited by
- Reliability analysis of serviceability performance for an underground cavern using a non-intrusive stochastic method vol.71, pp.3, 2014, https://doi.org/10.1007/s12665-013-2521-x
- Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach 2016, https://doi.org/10.1007/s10064-016-0937-8
- Determination of tunnel support pressure under the pile tip using upper and lower bounds with a superimposed approach vol.11, pp.4, 2016, https://doi.org/10.12989/gae.2016.11.4.587
- Multivariate adaptive regression splines for analysis of geotechnical engineering systems vol.48, 2013, https://doi.org/10.1016/j.compgeo.2012.09.016
- Progresses on the intelligent construction and operation maintenance of urban under-lake tunnels vol.295, pp.None, 2010, https://doi.org/10.1051/matecconf/201929501006
- EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements vol.19, pp.2, 2010, https://doi.org/10.12989/gae.2019.19.2.153
- Machine learning to inform tunnelling operations: recent advances and future trends vol.173, pp.4, 2010, https://doi.org/10.1680/jsmic.20.00011
- Evaluation of geological conditions and clogging of tunneling using machine learning vol.25, pp.1, 2010, https://doi.org/10.12989/gae.2021.25.1.059
- Revised Comparison of Tunnel Collapse Frequencies and Tunnel Failure Probabilities vol.7, pp.2, 2010, https://doi.org/10.1061/ajrua6.0001107