References
- Civalek, O. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Press. Vess. Piping, 83, 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005
- Civalek, O. (2006a), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., 6(4), 353-366. https://doi.org/10.12989/scs.2006.6.4.353
- Civalek, O. (2007), "Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach", J. Comput. Appl. Math., 205, 251-271. https://doi.org/10.1016/j.cam.2006.05.001
- Civalek, O. (2007a), "Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method", Int. J. Mech. Sci., 49, 752-765. https://doi.org/10.1016/j.ijmecsci.2006.10.002
- Civalek O. (2007b), "Frequency analysis of isotropic conical shells by discrete singular convolution (DSC)", Struct. Eng. Mech., 25(1), 127-131. https://doi.org/10.12989/sem.2007.25.1.127
- De Rosa, M.A. and Maurizi, M.J. (1999), "Dynamic analysis of multistep piles on Pasternak soil subjected to axial tip forces", J. Sound Vib., 219, 771-783. https://doi.org/10.1006/jsvi.1998.1826
- Doyle, P.F. and Pavlovic, M.N. (1982), "Vibration of beams on partial elastic foundations", Earthq. Eng. Struct. Dyn., 10, 663-674. https://doi.org/10.1002/eqe.4290100504
- Eisenberger, M. (1995), "Dynamics stiffness matrix for variable cross-section Timoshenko beams", Commun. Numer. Meth. En., 11, 507-513. https://doi.org/10.1002/cnm.1640110605
- Halabe, U.B. and Jain, S.K. (1996), "Lateral free vibration of a single pile with or without an axial load", J. Sound Vib., 195, 531-544. https://doi.org/10.1006/jsvi.1996.0443
- Kameswara Rao, N.S.V. and Das, Y.C. (1975), "Anandakrishnan M, Dynamic response of beams on generalized elastic foundation", Int. J. Solids Struct., 11, 255-273. https://doi.org/10.1016/0020-7683(75)90067-0
- Lee, J. and Schultz, W.W. (2004), "Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method", J. Sound Vib., 269, 609-621. https://doi.org/10.1016/S0022-460X(03)00047-6
- Matsunaga, H. (1999), "Vibration and buckling of deep beam-columns on two parameter elastic foundations", J. Sound Vib., 228(2), 359-376. https://doi.org/10.1006/jsvi.1999.2415
- Simsek, M. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by ritz method", Int. J. Eng. Appl. Sci., 1(3), 1-11.
- Simsek, M. and Kocaturk, T. (2009), "Non-linear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load", J. Sound Vib., 320, 235-253. https://doi.org/10.1016/j.jsv.2008.07.012
- Valsangkar, A.J. and Pradhanang, R. (1988), "Vibrations of beam-columns on two-parameter elastic foundations", Earthq. Eng. Struct. Dyn., 16, 217-225. https://doi.org/10.1002/eqe.4290160205
- Yankelevsky, D.Z. and Eisenberger, M. (1986), "Analysis of a beam-column on elastic foundations", Comput. Struct., 23(3), 351-356. https://doi.org/10.1016/0045-7949(86)90226-9
- Yokoyama, T. (1991), "Vibrations of Timoshenko beam-columns on two-parameter elastic foundations", Earthq. Eng. Struct. Dyn., 20, 355-370. https://doi.org/10.1002/eqe.4290200405
- Wei, G.W. (2000), "Wavelets generated by using discrete singular convolution kernels", J. Phys. A - Math. Gen., 33, 8577-8596. https://doi.org/10.1088/0305-4470/33/47/317
- Wei, G.W. (2001), "A new algorithm for solving some mechanical problems", Comput. Meth. Appl. Mech. Eng., 190, 2017-2030. https://doi.org/10.1016/S0045-7825(00)00219-X
- Wei, G.W. (2001a), "Vibration analysis by discrete singular convolution", J. Sound Vib., 244, 535-553. https://doi.org/10.1006/jsvi.2000.3507
- Wei, G.W. (2001b), "Discrete singular convolution for beam analysis", Eng. Struct., 23, 1045-1053. https://doi.org/10.1016/S0141-0296(01)00016-5
- Wie, G.W., Zhao, Y.B. and Xiang, Y. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm", Int. J. Numer. Meth. Eng., 55, 913-946. https://doi.org/10.1002/nme.526
- Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002a), "A novel approach for the analysis of high-frequency vibrations", J. Sound Vib., 257(2), 207-246. https://doi.org/10.1006/jsvi.2002.5055
- West, H.H. and Mafi, M. (1984), "Eigenvalues for beam-columns on elastic supports", J. Struct. Eng. - ASCE, 110(6), 1305-1320. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:6(1305)
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), "Discrete singular convolution for the prediction of high frequency vibration of plates", Int. J. Solids Struct., 39, 65-88. https://doi.org/10.1016/S0020-7683(01)00183-4
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002a), "Plate vibration under irregular internal supports", Int. J. Solids Struct., 39, 1361-1383. https://doi.org/10.1016/S0020-7683(01)00241-4
- Zhaohua, F. and Cook, R.D. (1983), "Beams elements on two-parameter elastic foundations", J. Eng. Mech. - ASCE, 109(6), 1390-1401. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:6(1390)
Cited by
- A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.727
- RBF-based meshless method for the free vibration of beams on elastic foundations vol.249, 2014, https://doi.org/10.1016/j.amc.2014.09.097
- Force-based derivation of exact stiffness matrix for beams onWinkler-Pasternak foundation vol.95, pp.2, 2015, https://doi.org/10.1002/zamm.201300030
- Modal and response bound predictions of uncertain rectangular composite plates based on an extreme value model vol.332, pp.5, 2013, https://doi.org/10.1016/j.jsv.2012.09.036
- Effects of Material Non-Homogeneity and Two Parameter Elastic Foundation on Fundamental Frequency Parameters of Timoshenko Beams vol.130, pp.1, 2016, https://doi.org/10.12693/APhysPolA.130.375
- Free vibration of functionally graded beams resting on Winkler-Pasternak foundation vol.11, pp.10, 2018, https://doi.org/10.1007/s12517-018-3579-2
- The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation vol.37, pp.4, 2011, https://doi.org/10.12989/sem.2011.37.4.415
- Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium vol.40, pp.4, 2010, https://doi.org/10.12989/sem.2011.40.4.583
- Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation vol.42, pp.1, 2010, https://doi.org/10.12989/sem.2012.42.1.039
- Dynamic modeling of embedded curved nanobeams incorporating surface effects vol.5, pp.3, 2010, https://doi.org/10.12989/csm.2016.5.3.255
- Variability of subgrade reaction modulus on flexible mat foundation vol.13, pp.5, 2010, https://doi.org/10.12989/gae.2017.13.5.757
- A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation vol.34, pp.4, 2010, https://doi.org/10.12989/scs.2020.34.4.511
- Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.485
- Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.285
- A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2010, https://doi.org/10.1007/s11831-019-09365-5
- Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation vol.27, pp.2, 2010, https://doi.org/10.12989/cac.2021.27.2.085
- Nonlinear flexibility-based beam element on Winkler-Pasternak foundation vol.24, pp.4, 2010, https://doi.org/10.12989/gae.2021.24.4.371
- Soil non-homogeneity and soil-structure interaction effects on beam vibrations vol.174, pp.3, 2010, https://doi.org/10.1680/jstbu.18.00091