DOI QR코드

DOI QR Code

Modelling creep of high strength concrete

  • Dias-da-Costa, D. (ISISE, Department of Civil Engineering, University of Coimbra) ;
  • Julio, E.N.B.S. (ISISE, Department of Civil Engineering, University of Coimbra)
  • Received : 2009.04.28
  • Accepted : 2010.08.21
  • Published : 2010.12.25

Abstract

Recent developments in concrete mixing made possible the production of concretes with high compressive strength showing, simultaneously, high workability. These concretes also present high strengths at young ages, allowing the application of loads sooner. It is of fundamental importance to verify if creep models developed for current concrete still apply to these new concretes. First, a FEM-based software was adopted to test available creep models, most used for normal strength concrete, considering examples with known analytical results. Several limitations were registered, resulting in an incorrect simulation of three-dimensional creep. Afterwards, it was implemented a Kelvin-chain algorithm allowing the use of a chosen number of elements, which adequately simulated the adopted examples. From the comparison between numerical and experimental results, it was concluded that the adopted algorithm can be used to model creep of high strength concrete, if the material properties are previously experimentally assessed.

Keywords

References

  1. Acker, P. and Ulm, F.J. (2001), "Creep and shrinkage of concrete: physical origins and practical measurements", Nucl. Eng. Des., 203, 143-158. https://doi.org/10.1016/S0029-5493(00)00304-6
  2. Argyris, J., St. Doltsinis, I. and Silva, V.D.D. (1992), "Constitutive modelling and computation of nonlinear viscoelastic solids. Part II: Application to orthotropic PVC-coated fabrics", Comput. Method. Appl. M., 98(2), 159-226. https://doi.org/10.1016/0045-7825(92)90175-J
  3. Bazant, Z.P. (1987), "Limitations of strain-hardening model for concrete creep", Cement. Concrete Res., 17(3), 505-509. https://doi.org/10.1016/0008-8846(87)90013-5
  4. Bazant, Z.P. and Prasannan, S. (1989), "Solidification theory for concrete creep 2. verification and application", J. Eng. Mech., 115(8), 1704-1725. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1704)
  5. Bazant, Z.P. and Wittmann, F.H. Eds. (1982), Creep and shrinkage in concrete structures, Numerical methods in Engineering, New York, John Wiley & Sons Ltd.
  6. Bockhold, J. (2007), "3D Material model for nonlinear basic creep of concrete", Comput. Concrete, 4(2), 101-117. https://doi.org/10.12989/cac.2007.4.2.101
  7. Borst, R.D. and Sluys, L.J. (1999), Computational methods in non-linear solid mechanics, Delft University of Technology, Delft.
  8. Coutinho, A.D.S. and Goncalves, A. (1988), Fabrico e propriedades do betao - Volume 3, LNEC, Lisbon. (in Portuguese)
  9. Dias-da-Costa, D. (2006), Comportamento Diferido do Betao. Modelacao Numerica do Comportamento de Fluencia de Vigas em Betao de Alta Resistencia, M.Sc. Thesis, Civil Engineering Department, University of Coimbra, Coimbra. (in Portuguese)
  10. England, G.L. (1967), "Numerical creep analysis applied to concrete structures", ACI J. Proceedings, 64(6), 301-311.
  11. Fernandes, P.A.L. (2006), Vigas de Grande Vao Pre-Fabricadas em Betao de Alta Resistencia Pre-Esforcado - Viabilidade, Dimensionamento, Fabrico e Comportamento, Ph.D. Thesis, University of Coimbra, Coimbra. (in Portuguese)
  12. Freudenthal, A.M. and Roll, F. (1958), "Creep and creep recovery of concrete under high compressive stress", ACI J. Proceedings, 54-30(66), 1111-1142.
  13. Gardner, N.J. and Tsuruta, H. (2004), "Is Superposition of creep strains valid for concretes subjected to drying creep?", ACI Mater. J., 101(5), 409-415.
  14. Gopalakrishnan, K.S. and Neville, A.M. and Ghali, A. (1969), "Creep poisson's ratio of concrete under multiaxial compression", ACI J. Proceedings, 66(12), 1008-1020.
  15. Illston, J.M. (1968), "Components of creep in mature concrete", ACI J. Proceedings, 65(3), 219-227.
  16. LNEC E 397 (1993), Especificacao E 397 - Betoes. Determinacao do modulo de elasticidade em compressao, LNEC, Lisbon. (in Portuguese)
  17. LNEC E 398 (1993), Especificacao E 398 - Betoes. Determinacao da retraccao e da expansao, LNEC, Lisbon. (in Portuguese)
  18. LNEC E 399 (1993), Especificacao E 399 - Betoes. Determinacao da fluencia em compressao, LNEC, Lisbon. (in Portuguese)
  19. Neville, A. M. (1959), "Creep recovery of mortars made with different cements", ACI J., Proceedings, 56, 167-174.
  20. Pichler, CH. (2008), "A multiscale creep model as basis for simulation of early-age concrete behavior", Comput. Concrete, 5(2), 295-328. https://doi.org/10.12989/cac.2008.5.4.295
  21. Ross, A.D. (1958), "Creep of concrete under variable stress", ACI J. Proceedings, 54(3), 739-758.
  22. Yue, L.L. (1992), Creep recovery of plain concrete under uniaxial compression, Laboratorium Magnel voor Gewapend Beton, Ph. D. Thesis, University of Ghent, Ghent.
  23. Yue, L.L. and Taerwe, L. (1992), "Creep recovery of plain concrete and its mathematical-modeling", Mag. Concrete Res., 44(161), 281-290. https://doi.org/10.1680/macr.1992.44.161.281
  24. Zienkiewicz, O.C. and Taylor, R.L. (1989), The finite element method. Volume 1:basic formulation and linear problems, Oxford, Butterworth-Heinemann.

Cited by

  1. Performance of HSC columns under severe cyclic loading vol.13, pp.2, 2015, https://doi.org/10.1007/s10518-014-9617-x
  2. Creep of concrete at variable stresses and heating vol.16, pp.6, 2015, https://doi.org/10.12989/cac.2015.16.6.897