참고문헌
- AFGC (French Association of Civil Engineering) (2007), Concrete design for a given structure service life, State-of-the-art and guide for the implementation of a predictive performance approach based upon durability indicators, AFGC Scientific and Technical Documents, Paris.
- Bentz, D.P. and Garboczi, E.J. (1991), "Percolation of phases in a three-dimensional cement paste microstructural model", Cement Concrete Res., 21(2), 325-344. https://doi.org/10.1016/0008-8846(91)90014-9
- Bourdette, B., Ringot, E. and Ollivier, J.P. (1995), "Modelling of the transition zone porosity", Cement Concrete Res., 25(4), 741-751. https://doi.org/10.1016/0008-8846(95)00064-J
- Bruggeman, D.A.G. (1935), "Calculation of various constants in heterogeneous substances. I. Dielectric constants and conductivity of composites from isotropic substances", Ann. Phys., 24, 636-679. (in German)
- Delagrave, A., Bigas, J.P., Ollivier, J.P., Marchand, J. and Pigeon, M. (1997), "Influence of the interfacial zone on the chloride diffusivity of mortars", Adv. Cement Base. Mater., 5(3), 86-92. https://doi.org/10.1016/S1065-7355(96)00008-9
- Drugan, W.J. and Willis, J.R. (1996), "A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites", J. Mech. Phys. Solids, 44(4), 497-524. https://doi.org/10.1016/0022-5096(96)00007-5
- El-Dieb, A.S. and Hooton, R.D. (1995), "Water permeability measurement of high performance concrete using high-pressure triaxial cell", Cement Concrete Res., 25(6), 1199-1208. https://doi.org/10.1016/0008-8846(95)00112-P
- Garboczi, E.J., Schwartz, L.M. and Bentz, D.P. (1995), "Modeling the influence of the interfacial zone on the DC electrical conductivity of mortar", Adv. Cement Base. Mater., 2(5),169-181. https://doi.org/10.1016/1065-7355(95)90001-2
- Gitman, I.M., Askes, H. and Sluys, L.J. (2007), "Representative volume: existence and size determination", Eng. Fract. Mech., 74(16), 2518-2534. https://doi.org/10.1016/j.engfracmech.2006.12.021
- Graham, S. and Yang, N. (2002), "Representative volumes of materials based on microstructural statistics", Scripta Mater., 48(3), 269-274.
- Hashin, Z. and Shtrikman S. (1962), "A variational approach to the theory of the effective magnetic permeability of multiphase materials", J. Appl. Phys., 33, 3125-3131. https://doi.org/10.1063/1.1728579
- Hashin, Z. (1983), "Analysis of composite materials-a survey", J. Appl. Mech., 50, 481-505. https://doi.org/10.1115/1.3167081
- Hu, J. and Stroeven P. (2004), "Properties of the interfacial transition zone in model concrete", Interface Sci., 12(4), 389-397. https://doi.org/10.1023/B:INTS.0000042337.39900.fb
- Kanit, T., Forest, S., Galliet, I., Mounoury, V. and Jeulin, D. (2003), "Determination of the size of the representative volume element for random composites: statistical and numerical approach", Int. J. Solids Struct., 40(13), 3647-3679.
- Kollek, J.J. (1989), "The determination of the permeability of concrete to oxygen by the Cembureau method - a recommendation", Mater. Struct., 22, 225-230. https://doi.org/10.1007/BF02472192
- Lantuejoul, C. (1991), "Ergodicity and integral range", J. Microscopy, 161, 387-403. https://doi.org/10.1111/j.1365-2818.1991.tb03099.x
- Maekawa. K., Ishida, T. and Kishi, T. (2009), Multi-scale modeling of structural concrete, Taylor & Francis, London and New York.
- Milton, G.W. (2002), The theory of composites, Cambridge University Press, Cambridge, UK.
- Nemati, K.M., Monteiro, P.J.M. and Scrivener, K.L. (1998), "Analysis of compressive stress-induced cracks in concrete", ACI Mater. J., 95(5), 617-630.
- Nemati, K.M. and Gardoni, P. (2005), "Microstructural and statistical evaluation of interfacial zone percolation in concrete", Strength, Fracture Complexity, 3(2), 191-197.
- Ollivier, J.P., Maso, J.C. and Bourdette, B. (1995), "Interfacial transition zone in concrete", Adv. Cement Base. Mater., 2(1), 30-38. https://doi.org/10.1016/1065-7355(95)90037-3
- Pelissou, C., Baccou, J., Monerie, Y. and Perales, F. (2009), "Determination of the size of the representative volume element for random quasi-brittle composites", Int. J. Solids Struct., 46(14), 2842-2855. https://doi.org/10.1016/j.ijsolstr.2009.03.015
- Powers, T.C. (1958), "Structure and physical properties of hardened portland cement paste", J. Am. Ceram. Soc., 41(1), 1-6.
- Reinhardt, H.W.(ed.) (1997), Penetration and permeability of concrete: barriers to organic and contaminating liquids, RILEM Report 16, E&FN Spon, London.
- Schwartz, L.M., Garboczi, E.J. and Bentz, D.P. (1995), "Interfacial transport in porous media: application to dc electrical conductivity of mortars", J. Appl. Phys., 78(10), 5898-5908. https://doi.org/10.1063/1.360591
- Scrivener, K.L. and Gartner, E.M. (1988), "Microstructural gradient in cement paste around aggregate particles", Mater. Res. Soc. Symp. Proc., 114, 77-85.
- Scrivener, K.L. (2004), "Backscattered electron imaging of cementitious microstructures: understanding and quantification", Cement Concrete Comp., 26(8), 935-945. https://doi.org/10.1016/j.cemconcomp.2004.02.029
- Snyder, K.A., Winslow, D.N., Bentz, D.P. and Garboczi, E.J. (1992), "Effects of interfacial zone percolation on cement based composite transport properties", Materials Research Society Symposium Proceedings, Advanced Cement Based Systems: Mechanisms and Properties, 245, 265-270.
- van Mier, J.G.M. (1997), Fracture processes of concrete, CRC Press, US.
- Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
- Wiener, O. (1912), "The theory of composites for the field of steady flow. First treatment of mean value estimates for force, polarization and energy", Abhandlungen der mathematischphysischen Klasse der Koniglich Gesellschaft der Wissenschaften, 32, 509-604. (in German)
- Yang, C.C. and Su, J.K. (2002), "Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar", Cement Concrete Res., 32(10), 1559-1565. https://doi.org/10.1016/S0008-8846(02)00832-3
피인용 문헌
- An experimental and numerical study on water permeability of concrete vol.105, 2016, https://doi.org/10.1016/j.conbuildmat.2015.12.184
- Modeling the three-dimensional unsaturated water transport in concrete at the mesoscale vol.190, 2017, https://doi.org/10.1016/j.compstruc.2017.05.005
- Computational homogenization of effective permeability in three-phase mesoscale concrete vol.121, 2016, https://doi.org/10.1016/j.conbuildmat.2016.05.141
- Effect of polyolefin fibers on the permeability of cement-based composites vol.9, pp.6, 2012, https://doi.org/10.12989/cac.2012.9.6.457
- A Probabilistic Study on Hydraulic Conductivity of Concrete at Mesoscale pp.0889-325X, 2018, https://doi.org/10.14359/51706938
- Influence of Temperature on the Moisture Transport in Concrete vol.11, pp.1, 2010, https://doi.org/10.3390/cryst11010008
- Modeling of the tension stiffening behavior and the water permeability change of steel bar reinforcing concrete using mesoscopic and macroscopic hydro-mechanical lattice model vol.291, pp.None, 2010, https://doi.org/10.1016/j.conbuildmat.2021.123266