DOI QR코드

DOI QR Code

Towards robust viscoelastic-plastic-damage material model with different hardenings/softenings capable of representing salient phenomena in seismic loading applications

  • Jehel, Pierre (LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris)) ;
  • Davenne, Luc (LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris)) ;
  • Ibrahimbegovic, Adnan (LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris)) ;
  • Leger, Pierre (Department of Civil Engineering, Ecole Polytechnique de Montreal University of Montreal Campus)
  • 투고 : 2009.06.22
  • 심사 : 2010.01.29
  • 발행 : 2010.08.25

초록

This paper presents the physical formulation of a 1D material model suitable for seismic applications. It is written within the framework of thermodynamics with internal variables that is, especially, very efficient for the phenomenological representation of material behaviors at macroscale: those of the representative elementary volume. The model can reproduce the main characteristics observed for concrete, that is nonsymetric loading rate-dependent (viscoelasticity) behavior with appearance of permanent deformations and local hysteresis (continuum plasticity), stiffness degradation (continuum damage), cracking due to displacement localization (discrete plasticity or damage). The parameters have a clear physical meaning and can thus be easily identified. Although this point is not detailed in the paper, this material model is developed to be implemented in a finite element computer program. Therefore, for the benefit of the robustness of the numerical implementation, (i) linear state equations (no local iteration required) are defined whenever possible and (ii) the conditions in which the presented model can enter the generalized standard materials class - whose elements benefit from good global and local stability properties - are clearly established. To illustrate the capabilities of this model - among them for Earthquake Engineering applications - results of some numerical applications are presented.

키워드

참고문헌

  1. Bhattacharjee, S.S. and Leger, P. (1993), "Seismic cracking and energy dissipation in concrete gravity dams", Earthq. Eng. Struct. D., 22(11), 991-1007. https://doi.org/10.1002/eqe.4290221106
  2. Bazant, Z.P. and Becq-Giraudon, E. (2002), "Statistical prediction of fracture parameters of concrete and implications for choice of testing standard", Cement Concrete Res., 32, 529-556. https://doi.org/10.1016/S0008-8846(01)00723-2
  3. Bazant, Z.P., Yu, Q. and Zi, G. (2002), "Choice of standard fracture test for concrete and its statistical evaluation", Int. J. Fract., 118, 303-337. https://doi.org/10.1023/A:1023399125413
  4. Bischoff, P.H. and Perry, S.H. (1995), "Impact behavior of plain concrete loaded in uniaxial compression", J. Eng. Mech., 121(6), 685-693. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:6(685)
  5. Chopra, A.K. (2001), Dynamics of structures: theory and applications to earthquake engineering, Prentice-Hall, Upper Saddle River, N.J.
  6. Davenne, L., Ragueneau, F., Mazars, J. and Ibrahimbegovic, A. (2003), "Efficient approaches to finite element analysis in earthquake engineering", Comput. Struct., 81, 1223-1239. https://doi.org/10.1016/S0045-7949(03)00038-5
  7. Dilger, W.H., Koch, R. and Kowalczyk, R. (1984), "Ductility of plain and confined concrete under different strain rates", ACI J. 81(11), 73-81.
  8. Dom nguez, N. and Fernández, M.A. (2010), "Enhanced solid element for modelling of reinforced concrete structures with bond-slip", Comput. Concrete, 7(4).
  9. Dujc, J, Brank, B., Ibrahimbegovic, A. and Brancherie, D. (2010), "An embedded crack model for failure analysis of concrete solids", Comput. Concrete, 7(4).
  10. Garikipati, K. and Hughes, T.J.R. (1998), "A study of strain localization in a multiple scale framework − the one-dimensional problem", Comput. Method. Appl. M., 159, 193-222. https://doi.org/10.1016/S0045-7825(97)00271-5
  11. Halphen, B. and Nguyen, Q.S. (1975), "On generalized standard materials", J. de Mecanique, 14, 39-63. (in French).
  12. Hautefeuille, M., Melnyk, S. and Colliat, J.B. (2009), "Failure model for heterogeneous structures using structured meshes and accounting for probability aspects", Eng. Comput., 26(1-2), 166-184. https://doi.org/10.1108/02644400910924852
  13. Hillerborg, A, Modéer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  14. Hill, R. (1950), The mathematical theory of plasticity, Clarenden Press, Oxford.
  15. Ibrahimbegovic, A. (2009), Nonlinear solids mechanics -- theoretical formulations and finite element solution methods, Springer, Berlin.
  16. Ibrahimbegovic, A. and Brancherie, D. (2003), "Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure", Comput. Mech., 31, 88-100. https://doi.org/10.1007/s00466-002-0396-x
  17. Ibrahimbegovic, A., Boulkertous, A., Davenne, L., Muhasilovic, M. and Pokrklic, A. (2010), "On modeling of fire resistance tests on concrete and reinforced concrete structures", Comput. Concrete, 7(4).
  18. Ibrahimbegovic, A., Jehel, P. and Davenne, L. (2008), "Coupled plasticity-damage model and direct stress interpolation", Comput. Mech., 42, 1-11. https://doi.org/10.1007/s00466-007-0230-6
  19. Kucerova, A., Brancherie, D., Ibrahimbegovic, A., Zeman, J. and Bittnar, Z. (2009), "Novel anisotropic continuumdiscrete damage model capable of representing localized failure of massive structures Part II: identification from tests under heterogeneous stress field", Eng. Comput., 26(1-2), 128-144. https://doi.org/10.1108/02644400910924834
  20. Lu, Y. and Xu, K. (2004), "Modelling of dynamic behaviour of concrete materials under blast loading", Int. J. Solids Struct., 41, 131-143. https://doi.org/10.1016/j.ijsolstr.2003.09.019
  21. Lubliner, J. (1990), Plasticity Theory, Macmillan, New York.
  22. Markovic, D. and Ibrahimbegovic, A. (2006), "Complementary energy based FE modelling of coupled elastoplastic and damage behavior for continuum microstructure computations", Comput. Method. Appl. M., 195, 5077-5093. https://doi.org/10.1016/j.cma.2005.05.058
  23. Martinelli, P. and Filippou, F. (2009), "Simulation of the shaking table test of a seven-story shear wall building", Earthq. Eng. Struct. D., 38, 587-607. https://doi.org/10.1002/eqe.897
  24. Maugin, G.A. (1999), The thermodynamics of nonlinear irreversible behaviors an introduction, River Edge, NJ World Scientific, Singapore.
  25. Mousseau, S., Paultre, P. and Mazars, J. (2008), "Seismic performance of a full-scale, reinforced high-performance concrete building - Part II: analytical study", Can. J. Civil Eng., 35, 849-862. https://doi.org/10.1139/L08-019
  26. Oliver, J. and Huespe, A.E. (2004), "Theoretical and computational issues in modelling material failure in strong discontinuity scenarios", Comput. Method. Appl. M., 193, 2987-3014. https://doi.org/10.1016/j.cma.2003.08.007
  27. Panoskaltsis, V.P., Papoulia, K.D., Bahuguna, S. and Korovajchuk, I. (2007), "The generalized Kuhn model of linear viscoelasticity", Mech. Time-Dependent Mater., 11, 217-230. https://doi.org/10.1007/s11043-007-9044-3
  28. Pedersen, R.R., Simone, A. and Sluys, L.J. (2008), "An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model", Eng. Fract. Mech., 75, 3782-3805. https://doi.org/10.1016/j.engfracmech.2008.02.004
  29. Perzyna, P. (1966), "Fundamental problems in viscoplasticity", Adv. Appl. Mech., 9, 243-377. Academic Press, New York. https://doi.org/10.1016/S0065-2156(08)70009-7
  30. Pham, B.H., Davenne, L., Brancherie, D. and Ibrahimbegovic, A. (2010), "Stress resultant model for ultimate load design of reinforced concrete frames - combined axial force and bending moment", Comput. Concrete, 7(4).
  31. Ramtani, S. (1990), Contribution to the modeling of the multi-axial behavior of damaged concrete with description of the unilateral characteristics, PhD thesis, Paris 6 University. (in French)
  32. Simo, J.C., Kennedy, J.G. and Taylor, R.L. (1989), "Complementary mixed finite element formulations for elastoplasticity", Comput. Method. Appl. M., 74, 177-206. https://doi.org/10.1016/0045-7825(89)90102-3
  33. Simo, J.C., Oliver, J. and Armero, F. (1993), "An analysis of strong discontinuity induced by strain softening solutions in rate-independent solids", J. Computat. Mech., 12, 277-296. https://doi.org/10.1007/BF00372173
  34. Strang, G. (1986), Introduction to applied mathematics, Cambridge Press, Wellesley, MA.
  35. Taylor, R.L. (2005), FEAP: a finite element analysis program, user manual and programmer manual, version 7.4. Department of Civil and Environmental Engineering, University of California, Berkeley, California.
  36. Wang, J. (2009), "Intrinsic damping: modeling techniques for engineering systems", J. Struct. Eng. - ASCE, 135(3), 282-291. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(282)
  37. Weerheijm, J. and Van Doormaal, JCAM (2006), "Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests", Int. J. Impact Eng. 34(3), 609-626.

피인용 문헌

  1. Global seismic damage assessment of high-rise hybrid structures vol.8, pp.3, 2011, https://doi.org/10.12989/cac.2011.8.3.311
  2. Coupling of nonlinear models for steel-concrete interaction in structural RC joints vol.3, pp.2, 2014, https://doi.org/10.12989/csm.2014.3.2.195
  3. A critical look into Rayleigh damping forces for seismic performance assessment of inelastic structures vol.78, 2014, https://doi.org/10.1016/j.engstruct.2014.08.003
  4. On damping created by heterogeneous yielding in the numerical analysis of nonlinear reinforced concrete frame elements vol.154, 2015, https://doi.org/10.1016/j.compstruc.2015.03.001
  5. Nonlinear modeling of a RC beam-column connection subjected to cyclic loading vol.21, pp.3, 2010, https://doi.org/10.12989/cac.2018.21.3.299