DOI QR코드

DOI QR Code

Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment

  • Pham, Ba-Hung (Ecole Normale Superieure de Cachan - Laboratoire de Mecanique et Technologie) ;
  • Davenne, Luc (Ecole Normale Superieure de Cachan - Laboratoire de Mecanique et Technologie) ;
  • Brancherie, Delphine (Universite de Technologie de Compiegne) ;
  • Ibrahimbegovic, Adnan (Ecole Normale Superieure de Cachan - Laboratoire de Mecanique et Technologie)
  • 투고 : 2009.07.30
  • 심사 : 2009.12.23
  • 발행 : 2010.08.25

초록

In this paper, we present a new finite Timoshenko beam element with a model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and or the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. The micro-scale is described by using the multi-fiber elements with embedded strain discontinuities in mode 1, which would typically be triggered by bending failure mode. A special attention is paid to the influence of the axial force on the bending moment - rotation response, especially for the columns behavior computation.

키워드

참고문헌

  1. Abrams, D.P. (1987), "Influence of axial force variations on exural behavior of reinforced concrete columns", ACI Struct. J., May-June.
  2. Anthoine, A., Guedes, J. and Pegon, P. (1997), "Non-linear behavior of reinforced concrete beams: from 3D continuum to 1D member modeling", Comput. Struct., 65(6), 949-963. https://doi.org/10.1016/S0045-7949(95)00260-X
  3. Armero, F. and Ehrlich, D. (2006), "Numerical modeling of softening hinges in thin euler-bernoulli beams", Comput. Struct., 84, 641-656. https://doi.org/10.1016/j.compstruc.2005.11.010
  4. Asferg, J.L., Poulsen, P.N. and Nielsen, L.O. (2007), "A direct XFEM formulation for modeling of cohesive crack growth in concrete", Comput. Concrete, 4(2), 83-100. https://doi.org/10.12989/cac.2007.4.2.083
  5. Cipollina, A., Lopez-Inojosa, A. and Florez-Lopez, J. (1995), "A simplified damage mechanics approach to nonlinear analysis of frames", Comput. Struct., 54, 1113-1126. https://doi.org/10.1016/0045-7949(94)00394-I
  6. Dufour, F., Pijaudier-Cabot, G., Choinska, M. and Huerta, A. (2008), "Extraction of a crack opening from a continuous approach using regularized damage models", Comput. Concrete, 5(4), 375-388. https://doi.org/10.12989/cac.2008.5.4.375
  7. Ehrlich, D. and Armero, F. (2005), "Finite element methods for the analysis of softening plastic hinges in beam and frames", Comput. Mech., 35, 237-264. https://doi.org/10.1007/s00466-004-0575-z
  8. EURO CODE 2, Design of concrete structures - Part 1-1 : general rules and rules for buildings.
  9. Florez-Lopez, J. (1998), "Frame analysis and continuum damage mechanics", Eur. J. Mech. - A/Solids, 17(2), 269-283. https://doi.org/10.1016/S0997-7538(98)80086-7
  10. Ibrahimbegovic, A. and Wilson, E. (1991), "A modified method of incompatible modes", Commun. Numer. Meth. Eng., 7, 187-194. https://doi.org/10.1002/cnm.1630070303
  11. Ibrahimbegovic, A. (2009), Nonlinear solid mechanics - theoretical formulations and finite element solution methods, Springer, 576.
  12. Ibrahimbegovic, A. and Brancherie, D. (2003), "Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure", Comput. Mech., 31, 88-100. https://doi.org/10.1007/s00466-002-0396-x
  13. Ibrahimbegovic, A. and Frey F. (1993), "Stress resultants finite element analysis of reinforced concrete plates", Eng. Comput., 15-30.
  14. Ibrahimbegovic, A. and Frey, F. (1993), "An efficient implementation of stress resultant plasticity in analysis of reissner-mindlin plates", Int. J. Numer. Method. Eng., 36, 303-320. https://doi.org/10.1002/nme.1620360209
  15. Jirasek, M. (1997), "Analytical and numerical solutions for frames with softening hinges", J. Eng. Mech. - ASCE, 123(1), 8-14. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:1(8)
  16. Marante, M.E. and Florez-Lopez, J. (2003), "Three-dimensional analysis of reinforced concrete frames based on lumped damage mechanics", Int. J. Solids Struct., 40, 5109-5123. https://doi.org/10.1016/S0020-7683(03)00258-0
  17. Marante, M.E., Picon, R. and Florez-Lopez, J. (2004), "Analysis of localization in frame members with plastic hinges", Int. J. Solids Struct., 41, 3961-3975. https://doi.org/10.1016/j.ijsolstr.2004.02.014
  18. Nanakorn, P. (2004), "Two-dimensional a beam-colum finite element with embedded rotational discontinuities", Comput. Struct., 82, 753-762. https://doi.org/10.1016/j.compstruc.2004.02.008
  19. Pham, B.H. (2009), Stress resultant model for optimal design of reinforced concrete frames, PhD Thesis, Ecole Normale Superieure de Cachan, France.
  20. Rajasankar, F.J., Nagesh, R.I. and Meher, A. (2009), "Prasad Modelling inelastic hinges using CDM for non linear analysis of reinforced concrete frame structures", Comput. Concrete, 6(4), 319-341. https://doi.org/10.12989/cac.2009.6.4.319
  21. Vecchio, F.J. and Emara, M.B. (1992), "Shear deformations in reinforced concrete frames", ACI Struct. J., 89(1), 46-56.
  22. Zingales, M. and Elishako, I. (2000), "Localization of the bending response in presence of axial load", Int. J. Solids Struct. 37, 6739-6753. https://doi.org/10.1016/S0020-7683(99)00282-6

피인용 문헌

  1. Enriched Timoshenko beam finite element for modeling bending and shear failure of reinforced concrete frames vol.143, 2014, https://doi.org/10.1016/j.compstruc.2014.06.004
  2. Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates vol.51, pp.3, 2013, https://doi.org/10.1007/s00466-012-0734-6
  3. A comparison of displacement-based Timoshenko multi-fiber beams finite element formulations and elasto-plastic applications vol.22, pp.4, 2018, https://doi.org/10.1080/19648189.2016.1210031
  4. An efficient materially nonlinear finite element model for reinforced concrete beams based on layered global-local kinematics 2018, https://doi.org/10.1007/s00707-017-2081-3
  5. Embedded discontinuity finite element formulation for failure analysis of planar reinforced concrete beams and frames vol.50, 2013, https://doi.org/10.1016/j.engstruct.2012.07.028
  6. An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading vol.66, pp.3, 2010, https://doi.org/10.12989/sem.2018.66.3.305
  7. A multifiber Timoshenko beam with embedded discontinuities vol.214, pp.None, 2010, https://doi.org/10.1016/j.engfracmech.2019.03.032