DOI QR코드

DOI QR Code

Simulation of brittle fracture of autoclaved aerated concrete

  • Kadashevich, I. (Otto-von-Guericke-Universitat Magdeburg, Institut fur Experimentelle Physik) ;
  • Stoyan, D. (TU Bergakademie Freiberg, Institut fur Stochastik)
  • Received : 2007.12.17
  • Accepted : 2009.07.17
  • Published : 2010.02.25

Abstract

The system of pores of autoclaved aerated concrete (AAC) is described by the so-called cherry-pit model, a random system of partially interpenetrating spheres. For the simulation of fracture processes, the solid phase is approximated by an irregular spatial network of beams obtained by means of the so-called radical tessellation with respect to the pore spheres. FE calculations using standard software (ANSYS) yield the strain energies of the beams. These energies are used as fracture criterion according to which highly loaded beams are considered as broken and are removed from the network. The paper investigates the relationship between mean fracture strength and microstructure for structures close to real AAC samples and virtual structures with particular geometrical properties.

Keywords

References

  1. Bazant, Z.P. and Planas, J. (1997), Fracture and Size Effect in Concrete and other Quasibrittle Materials, CRC Press, Boca Raton, FL.
  2. Bezrukov, A., Bargiel, M. and Stoyan, D. (2002), "Statistical analysis of simulated random packings of spheres", Part. Part. Syst. Char., 19, 111-118. https://doi.org/10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M
  3. Bohm, H.J. (2004), Mechanics of Microstructured Materials, Springer, Wien.
  4. Bolander, J.E. and Sukumar, N. (2005), "Irregular lattice model for quasistatic crack propagation", Phys. Rev. B., 74, 094106.
  5. Christ, N.H., Friedberg, R. and Lee, T.D. (1982), "Random lattice field theory: general formulation", Nucl. Phys. B., 210, 337-346. https://doi.org/10.1016/0550-3213(82)90124-9
  6. Garboczi, E.J. (1998), "Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials", NIST Internal Report 6269, Chapter 2.
  7. Garboczi, E.J. and Day, A.R. (1995), "An algorithm for computing the effective linear elastic properties of heterogeneous materials: three-dimensional results for composites with equal Poisson ratios", J. Mech. Phys., Solids, 43, 1349-1362. https://doi.org/10.1016/0022-5096(95)00050-S
  8. Gervois, A., Oger, L., Richard, P. and Troadec, J.P. (2002), "Voronoi and radical tessellations of packings of spheres", Computational Geometry and Applications (CGA'02), Amsterdam.
  9. Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structure and Properties, Cambridge, University Press, Cambridge.
  10. Hrenniko, A. (1941), "Solution of problems in elasticity by the framework method", J. Appl. Mech. Tech. Phys., 12, 169-175.
  11. Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008), Statistical Analysis and Modelling of Spatial Point Patterns, Chichester, J. Wiley and Sons.
  12. Kadashevich, I. and Stoyan, D. (2008), "A beam-network model for autoclaved aerated concrete and its use for the investigation of relationships between Young's modulus and microstructure", Comp. Mater. Sci., 43, 293-300. https://doi.org/10.1016/j.commatsci.2007.11.005
  13. Kadashevich, I. and Stoyan, D. (2005), "Micro-mechanical effect analysis of AAC", in: Limbachiya, Roberts (Eds.), Autoclaved Aerated Concrete, Taylor & Francis Group, London, 219-228.
  14. Kadashevich, I., Schneider, H.J. and Stoyan, D. (2005), "Statistical modeling of the geometrical structure of the system of artificial air pores in autoclaved aerated concrete", Cement Concrete Res., 35, 1495-1502. https://doi.org/10.1016/j.cemconres.2004.10.010
  15. Krajcinovic, D. (1996), Damage Mechanics, Amsterdam, North Holland.
  16. Lachihab, A. and Sab, K. (2005), "Aggregate composites: a contact based modelling", Comp. Mater. Sci., 33, 467-490. https://doi.org/10.1016/j.commatsci.2004.10.003
  17. Lin, C. and Cohen, M.H. (1982), "Quantitative methods for microgeometric modeling", J. Appl. Phys., 53, 4152-4165. https://doi.org/10.1063/1.331238
  18. Nishida, S. I. (2004), Macro-and Microscopic Approach to Fracture, WIT Press, Southampton.
  19. Okabe, A., Boots, B., Sugihara, K. and Chiu, S. Nok (2000), Spatial Tessellations, Concepts and Applications of Voronoi Diagrams, 2nd edition., John Wiley & Sons, Chichester.
  20. Pothuaud, L., Porion, P., Lespersailles, E., Benhamou, C.L. and Levitz, P. (2000), "A new method for threedimensional skeleton graph analysis of porous media: application to trabecular bone microarchitecture", J. Microsc., 199, 149-161. https://doi.org/10.1046/j.1365-2818.2000.00725.x
  21. Richard, P., Oger, L., Troadec, J.P. and Gervois, A. (2001), "A model of binary assemblies of spheres", Eur. Phys. J.E. 6, 295-303. https://doi.org/10.1007/s10189-001-8044-6
  22. Roberts, A.P. and Garboczi, E.J. (2002), "Elastic properties of model random three-dimensional open-cell solids", J. Mech. Phys. Solids, 50, 33-55. https://doi.org/10.1016/S0022-5096(01)00056-4
  23. Ryan, T.M. and van Rietbergen, B. (2005), "Mechanical significance of femoral head trabecular bone structure in Loris and Galago evaluated using micromechanical finite element methods", Am. J. Phys. Anthropol., 126, 82-96. https://doi.org/10.1002/ajpa.10414
  24. Sahimi, M. (2003), Heterogeneous Materials II. Nonlinear and Break Down Properties and Atomistic Modeling, Springer, New York.
  25. Sahimi, M. and Arbabi, S. (1993), "Mechanics of disordered solids. I, Percolation on elastic networks with central forces", Phys. Rev. B., 47, 695-702. https://doi.org/10.1103/PhysRevB.47.695
  26. Sahimi, M. and Arbabi, S. (1993), Mechanics of disordered solids. II. Percolation on elastic networks with bondbending forces, Phys. Rev. B., 47, 703-712. https://doi.org/10.1103/PhysRevB.47.703
  27. Stroeven, P. and Stroeven, M. (2001), "SPACE approach to concrete's space structure and its mechanical properties". Heron, 46, 265-289.
  28. Stroeven, M., Askes, H. and Sluys, L.J. (2004), "Numerical determination of representative volumes for granular materials". Comput. Method. Appl. M., 193, 3221-3238. https://doi.org/10.1016/j.cma.2003.09.023
  29. Telley, H., Liebling, T.M. and Mocellin, A. (1996), "The Laguerre model of grain growth in two dimensions I. Cellular structures viewed as dynamical Laguerre tessellations". Philos. Mag., 73, 395-408. https://doi.org/10.1080/13642819608239125
  30. Torquato, S. (2002), Random Heterogeneous Materials, Microstructure and Macroscopic Properties, Springer, New York.
  31. Wolf, S., Wiegand, S., Stoyan, D. and Walther, H. (2005), "The compressive strength of AAC - a statistical investigation", in: Limbachiya, Roberts (Eds.), Autoclaved Aerated Concrete, Taylor & Francis Group, London, 287-295.

Cited by

  1. Influence of randomness in topology, geometry and material properties on the mechanical response of elastic central-force networks vol.40, 2015, https://doi.org/10.1016/j.probengmech.2015.02.005