References
- Bazant, Z.P. and Planas, J. (1997), Fracture and Size Effect in Concrete and other Quasibrittle Materials, CRC Press, Boca Raton, FL.
- Bezrukov, A., Bargiel, M. and Stoyan, D. (2002), "Statistical analysis of simulated random packings of spheres", Part. Part. Syst. Char., 19, 111-118. https://doi.org/10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M
- Bohm, H.J. (2004), Mechanics of Microstructured Materials, Springer, Wien.
- Bolander, J.E. and Sukumar, N. (2005), "Irregular lattice model for quasistatic crack propagation", Phys. Rev. B., 74, 094106.
- Christ, N.H., Friedberg, R. and Lee, T.D. (1982), "Random lattice field theory: general formulation", Nucl. Phys. B., 210, 337-346. https://doi.org/10.1016/0550-3213(82)90124-9
- Garboczi, E.J. (1998), "Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials", NIST Internal Report 6269, Chapter 2.
- Garboczi, E.J. and Day, A.R. (1995), "An algorithm for computing the effective linear elastic properties of heterogeneous materials: three-dimensional results for composites with equal Poisson ratios", J. Mech. Phys., Solids, 43, 1349-1362. https://doi.org/10.1016/0022-5096(95)00050-S
- Gervois, A., Oger, L., Richard, P. and Troadec, J.P. (2002), "Voronoi and radical tessellations of packings of spheres", Computational Geometry and Applications (CGA'02), Amsterdam.
- Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structure and Properties, Cambridge, University Press, Cambridge.
- Hrenniko, A. (1941), "Solution of problems in elasticity by the framework method", J. Appl. Mech. Tech. Phys., 12, 169-175.
- Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008), Statistical Analysis and Modelling of Spatial Point Patterns, Chichester, J. Wiley and Sons.
- Kadashevich, I. and Stoyan, D. (2008), "A beam-network model for autoclaved aerated concrete and its use for the investigation of relationships between Young's modulus and microstructure", Comp. Mater. Sci., 43, 293-300. https://doi.org/10.1016/j.commatsci.2007.11.005
- Kadashevich, I. and Stoyan, D. (2005), "Micro-mechanical effect analysis of AAC", in: Limbachiya, Roberts (Eds.), Autoclaved Aerated Concrete, Taylor & Francis Group, London, 219-228.
- Kadashevich, I., Schneider, H.J. and Stoyan, D. (2005), "Statistical modeling of the geometrical structure of the system of artificial air pores in autoclaved aerated concrete", Cement Concrete Res., 35, 1495-1502. https://doi.org/10.1016/j.cemconres.2004.10.010
- Krajcinovic, D. (1996), Damage Mechanics, Amsterdam, North Holland.
- Lachihab, A. and Sab, K. (2005), "Aggregate composites: a contact based modelling", Comp. Mater. Sci., 33, 467-490. https://doi.org/10.1016/j.commatsci.2004.10.003
- Lin, C. and Cohen, M.H. (1982), "Quantitative methods for microgeometric modeling", J. Appl. Phys., 53, 4152-4165. https://doi.org/10.1063/1.331238
- Nishida, S. I. (2004), Macro-and Microscopic Approach to Fracture, WIT Press, Southampton.
- Okabe, A., Boots, B., Sugihara, K. and Chiu, S. Nok (2000), Spatial Tessellations, Concepts and Applications of Voronoi Diagrams, 2nd edition., John Wiley & Sons, Chichester.
- Pothuaud, L., Porion, P., Lespersailles, E., Benhamou, C.L. and Levitz, P. (2000), "A new method for threedimensional skeleton graph analysis of porous media: application to trabecular bone microarchitecture", J. Microsc., 199, 149-161. https://doi.org/10.1046/j.1365-2818.2000.00725.x
- Richard, P., Oger, L., Troadec, J.P. and Gervois, A. (2001), "A model of binary assemblies of spheres", Eur. Phys. J.E. 6, 295-303. https://doi.org/10.1007/s10189-001-8044-6
- Roberts, A.P. and Garboczi, E.J. (2002), "Elastic properties of model random three-dimensional open-cell solids", J. Mech. Phys. Solids, 50, 33-55. https://doi.org/10.1016/S0022-5096(01)00056-4
- Ryan, T.M. and van Rietbergen, B. (2005), "Mechanical significance of femoral head trabecular bone structure in Loris and Galago evaluated using micromechanical finite element methods", Am. J. Phys. Anthropol., 126, 82-96. https://doi.org/10.1002/ajpa.10414
- Sahimi, M. (2003), Heterogeneous Materials II. Nonlinear and Break Down Properties and Atomistic Modeling, Springer, New York.
- Sahimi, M. and Arbabi, S. (1993), "Mechanics of disordered solids. I, Percolation on elastic networks with central forces", Phys. Rev. B., 47, 695-702. https://doi.org/10.1103/PhysRevB.47.695
- Sahimi, M. and Arbabi, S. (1993), Mechanics of disordered solids. II. Percolation on elastic networks with bondbending forces, Phys. Rev. B., 47, 703-712. https://doi.org/10.1103/PhysRevB.47.703
- Stroeven, P. and Stroeven, M. (2001), "SPACE approach to concrete's space structure and its mechanical properties". Heron, 46, 265-289.
- Stroeven, M., Askes, H. and Sluys, L.J. (2004), "Numerical determination of representative volumes for granular materials". Comput. Method. Appl. M., 193, 3221-3238. https://doi.org/10.1016/j.cma.2003.09.023
- Telley, H., Liebling, T.M. and Mocellin, A. (1996), "The Laguerre model of grain growth in two dimensions I. Cellular structures viewed as dynamical Laguerre tessellations". Philos. Mag., 73, 395-408. https://doi.org/10.1080/13642819608239125
- Torquato, S. (2002), Random Heterogeneous Materials, Microstructure and Macroscopic Properties, Springer, New York.
- Wolf, S., Wiegand, S., Stoyan, D. and Walther, H. (2005), "The compressive strength of AAC - a statistical investigation", in: Limbachiya, Roberts (Eds.), Autoclaved Aerated Concrete, Taylor & Francis Group, London, 287-295.
Cited by
- Influence of randomness in topology, geometry and material properties on the mechanical response of elastic central-force networks vol.40, 2015, https://doi.org/10.1016/j.probengmech.2015.02.005