Acknowledgement
Supported by : National Science Council
References
- Babu, K.G. and Rao, G.S.N. (1996), "Efficiency of fly ash in concrete with age", Cement Concrete Res., 26(3), 465-474. https://doi.org/10.1016/S0008-8846(96)85034-4
- Berry, E.E., Hemmings, R.T. and Cornelius, B.J. (1990), "Mechanism of hydration reactions in high volume fly ash pastes and mortars", Cement Concrete Compos., 12(4), 253-261. https://doi.org/10.1016/0958-9465(90)90004-H
- Berry, E.E., Hemmings, R.T., Zhang, M.H., Cornelious, B.J. and Golden, D.M. (1994), "Hydration in highvolume fly ash concrete binders", ACI Material J., 91(4), 382-389.
- Bilodeau, A. and Malhorta, V.M. (2000), "High-volume fly ash system: concrete solution for sustainable development", ACI Mater. J., 97(1), 41-48.
- Bogue, R.H. (1929), "Calculation of the compounds in portland cement", Ind. Eng. Chem. Analytical Edition, 1(4), 192-197. https://doi.org/10.1021/ac50068a006
- Bouzoubaa, N., Fournier, B., Malhotra, V.M. and Golden, D.M. (2002), "Mechanical properties and durability of concrete made with high-volume fly ash blended cements produced in cement plant", ACI Mater. J., 99(6), 560-567.
- Burak, U., Turanli, L. and Mehta, P.K. (2007), "High-volume natural pozzolan concrete for structural applications", ACI Mater. J., 104(5), 535-538.
- Cao, Y. and Detwiler, R.J. (1995), "Backscattered electron imaging of cement pastes cured at elevated temperatures", Cement Concrete Res., 25(3), 627-638. https://doi.org/10.1016/0008-8846(95)00051-D
- Chen, H.J., Yang, T.Y. and Tang, C.W. (2009), "Strength and durability of concrete in hot spring environments", Comput. Concrete, 6(4), 269-280. https://doi.org/10.12989/cac.2009.6.4.269
- Escalante-Garcia, J.I. and Sharp, J.H. (1998), "Effect of temperature on the hydration of the main clinker phases in portland cements: Part I. Neat cements", Cement Concrete Res., 28(9), 1245-1257. https://doi.org/10.1016/S0008-8846(98)00115-X
- Escalante, J.I., Gomez, L.Y., Johal, K.K., Mendoza, G., Mancha, H. and Méndez, J. (2001), "Reactivity of blastfurnace slag in portland cement blends hydrated under different conditions", Cement Concrete Res., 31(10), 1403-1409. https://doi.org/10.1016/S0008-8846(01)00587-7
- Fajun, W., Grutzeck, M.W. and Roy, D.M. (1985), "The retarding effect of fly ash upon the hydration of cement pastes: The first 24 hours", Cement Concrete Res., 15(1), 174-184. https://doi.org/10.1016/0008-8846(85)90024-9
- Feldman, R.F., Carette, G.G. and Malhotra, V.M. (1990), "Studies on the development of physical and mechanical properties of high-volume fly ash-cement pastes", Cement Concrete Compos., 12(4), 245-251. https://doi.org/10.1016/0958-9465(90)90003-G
- Galle, C. (2001), "Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry -A comparative study between oven-, vacuum-, and freeze-drying", Cement Concrete Res., 31(10), 1467-1477. https://doi.org/10.1016/S0008-8846(01)00594-4
- Ge, Z. and Wang, K. (2009), "Modified heat of hydration and strength models for concrete containing fly ash and slag", Comput. Concrete, 6(1), 19-40. https://doi.org/10.12989/cac.2009.6.1.019
- Hussin, M.W., Kang, L.S. and Zakaria, F. (2007), "Engineering properties of high volume slag cement grout in tropical climate", Malaysian J. Civil Eng., 19(1), 42-54.
- Hwang, C.L. and Hsieh, S.L. (2007), "The effect of fly ash/slag on the property of reactive powder mortar designed by using Fuller's ideal curve and error function", Comput. Concrete, 4(6), 425-436. https://doi.org/10.12989/cac.2007.4.6.425
- Kosmatka, S.H., Kerkhoff, B. and Panarese, W.C. (2002), Design and Control of Concrete Mixtures, 14th Edition, EB001.14T, Portland Cement Association, Skokie, IL.
- Lam, L., Wong, Y.L. and Poon, C.S. (2000), "Degree of hydration and gel/space ratio of high-volume fly ash/ cement systems", Cement Concrete Res., 30(5), 747-756. https://doi.org/10.1016/S0008-8846(00)00213-1
-
Li, S., Roy, D.M. and Kumer, A. (1985), "Quantitative determination of pozzolanas in hydrated system of cement or
$Ca(OH)_2$ with Fly Ash or Silica Fume", Cement Concrete Res., 15(6), 1079-1086. https://doi.org/10.1016/0008-8846(85)90100-0 - Luke, K. and Glasser, F.P. (1987), "Selective dissolution of hydrated blast furnaces slag cements", Cement Concrete Res., 17(2), 273-282. https://doi.org/10.1016/0008-8846(87)90110-4
- Malhotra, V.M. (2002), "High-Performance High-Volume Fly Ash Concrete", Concrete Int., 24(7), 30-34.
- Maltais, Y. and Marchand, J. (1997), "Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars", Cement Concrete Res., 27(7), 1009-1020. https://doi.org/10.1016/S0008-8846(97)00098-7
- Metha, P.K. and Monteiro, P.J.M. (2006), Concrete; Microstructure, Properties and Materials, 3rd Edition, McGraw-Hill, New York.
- Neville, A.M. (1995), Properties of Concrete, 4th ed., Longman Group, UK.
-
Ohsawa, S., Asaga, K., Goto, S. and Daimon, M. (1985), "Quantitative determination of fly ash in the hydrated fly ash-
$CaSO_4{\cdot}2H_2O-Ca(OH)_2$ system", Cement Concrete Res., 15(2), 357-366. https://doi.org/10.1016/0008-8846(85)90047-X - Powers, T.C. and Brownyard, T.L. (1948), Studies of the Physical Properties of Hardened Portland Cement Paste, American Concrete Institute, ACI Bulletin 22, March.
- Reiner, M. and Rens, K. (2006), "High-volume fly ash concrete: analysis and application", Practice Period. Struct. Des. Constr., 11(1), 58-64. https://doi.org/10.1061/(ASCE)1084-0680(2006)11:1(58)
- Richardson, I.G. and Groves, G.W. (1992), "Microstructure and microanalysis of hardened cement pastes involving ground granulated blast furnace slag", J. Mater. Sci., 27, 6204-6212. https://doi.org/10.1007/BF01133772
- Rukzon, S. and Chindaprasirt, P. (2008), "Modified heat of hydration and strength models for concrete containing fly ash and slag", Comput. Concrete, 5(1), 75-88. https://doi.org/10.12989/cac.2008.5.1.075
- Taylor, H.F.W. (1990), Cement Chemistry, Academic Press, London, UK.
- Tixier, R., Devaguptapu, R., Mobasher, B. (1997), "The effect of copper slag on the hydration and mechanical properties of cementitious mixtures", Cement Concrete Res., 27(10), 1569-1580. https://doi.org/10.1016/S0008-8846(97)00166-X
- Turanli, L., Uzal, B. and Bektas, F. (2004), "Effect of material characteristics on the properties of blended cements containing high-volumes of natural pozzolans", Cement Concrete Res., 34(12), 2277-2282. https://doi.org/10.1016/j.cemconres.2004.04.011
- Uzal, B. and Turanli, L. (2003), "Studies on blended cements containing a high volume of natural pozzolans", Cement Concrete Res., 33(11), 1777-1781. https://doi.org/10.1016/S0008-8846(03)00173-X
- Wu, J.H., Pu, X.C., Liu, F. and Wang, C. (2006), "High performance concrete with high volume fly ash", Key Eng. Mater., 302-303, 470-478. https://doi.org/10.4028/www.scientific.net/KEM.302-303.470
Cited by
- Feasibility of utilizing oven-drying test to estimate the durability performance of concrete vol.8, pp.4, 2011, https://doi.org/10.12989/cac.2011.8.4.389
- Efficiency factor of high calcium Class F fly ash in concrete vol.8, pp.5, 2011, https://doi.org/10.12989/cac.2011.8.5.583
- Realistic pore structure of Portland cement paste: experimental study and numerical simulation vol.11, pp.4, 2013, https://doi.org/10.12989/cac.2013.11.4.317
- Property investigation of individual phases in cementitious composites containing silica fume and fly ash vol.57, 2015, https://doi.org/10.1016/j.cemconcomp.2014.11.011
- Prediction of compressive strength of slag concrete using a blended cement hydration model vol.14, pp.3, 2014, https://doi.org/10.12989/cac.2014.14.3.247
- Statistical nanoindentation technique in application to hardened cement pastes: Influences of material microstructure and analysis method vol.113, 2016, https://doi.org/10.1016/j.conbuildmat.2016.03.064
- Prediction of temperature distribution in concrete incorporating fly ash or slag using a hydration model vol.42, pp.1, 2011, https://doi.org/10.1016/j.compositesb.2010.09.017
- Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes vol.27, pp.1, 2012, https://doi.org/10.1016/j.conbuildmat.2011.07.007
- Interactions between Organic and Inorganic Phases in PA- and PU/PA-Modified-Cement-Based Materials vol.23, pp.10, 2011, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000302
- Adding limestone fines, fly ash and silica fume to reduce heat generation of concrete vol.65, pp.14, 2013, https://doi.org/10.1680/macr.12.00209
- Effect and limitation of free lime content in cement-fly ash mixtures vol.102, 2016, https://doi.org/10.1016/j.conbuildmat.2015.10.174
- Modeling of hydration reactions to predict the properties of slag blended concrete vol.41, pp.5, 2014, https://doi.org/10.1139/cjce-2013-0109
- The effect of w/b and temperature on the hydration and strength of blastfurnace slag cements vol.111, 2016, https://doi.org/10.1016/j.conbuildmat.2015.11.001
- Prediction of temperature distribution in hardening silica fume-blended concrete vol.13, pp.1, 2014, https://doi.org/10.12989/cac.2014.13.1.097
- Effect of Curing Temperature on Pozzolanic Reaction of Fly Ash in Blended Cement Paste vol.5, pp.1, 2014, https://doi.org/10.7763/IJCEA.2014.V5.346
- Reaction and microstructure of cement–fly-ash system vol.48, pp.6, 2015, https://doi.org/10.1617/s11527-014-0266-y
- Shear behavior of reinforced HPC beams made of a low cement content without shear reinforcements vol.11, pp.1, 2013, https://doi.org/10.12989/cac.2013.11.1.021
- Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites vol.95, 2014, https://doi.org/10.1016/j.matchar.2014.06.012
- Concrete crack rehabilitation using biological enzyme vol.19, pp.4, 2010, https://doi.org/10.12989/cac.2017.19.4.413
- Effect of accelerators with waste material on the properties of cement paste and mortar vol.22, pp.2, 2010, https://doi.org/10.12989/cac.2018.22.2.153
- Study on Durability against Dry-Wet Cycles and Chloride Ion Erosion of Concrete Revetment Materials at the Water-Level-Fluctuations Zone in Yellow River Delta Wetlands vol.40, pp.6, 2020, https://doi.org/10.1007/s13157-020-01326-0