Acknowledgement
Supported by : National Science Council
References
- Aguilar, G., Matamoros, A.B., Parra-Montesinos, G.J., Ramirez, J.A. and Wight, J.K. (2002), "Experimental evaluation of design procedures for shear strength of deep reinforced concrete beams", ACI Struct. J., 99(4), 539-548.
- American Concrete Institute (2008), "Building code requirements for structural concrete", ACI 318-08 and Commentary (ACI 318R-08), Farmington Hills, Mich.
- Bali, I. and Hwang, S.J. (2007), "Strength and deflection prediction of double-curvature reinforced concrete squat walls", Struct. Eng. Mech., 27(4), 501-521. https://doi.org/10.12989/sem.2007.27.4.501
- Gere, J.M. and Timoshenko, S.P. (1997), "Mechanics of materials", PWS Publishing Company, Boston, MA.
- Hwang, S.J., Lu, W.Y. and Lee, H.J. (2000), "Shear strength prediction for deep beams", ACI Struct. J., 97(3), 367-376.
- Hwang, S.J. and Lee, H.J. (2002), "Strength prediction for discontinuity regions failing in diagonal compressions by softened strut-and-tie model", J. Struct. Eng., ASCE, 128(12), 1519-1526. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1519)
- Russo, G., Venir, R. and Pauletta, M. (2005), "Reinforced concrete deep beams-shear strength model and design formula", ACI Struct. J., 102(3), 429-437.
- Smith, K.N. and Vantsiotis, A.S. (1982), "Shear strength of deep beams", ACI J., 79(3), 201-213.
- Tan, K.H., Kong, F.K., Teng, S. and Guan, L. (1995), "High-strength concrete deep beams with effective span and shear span variations", ACI Struct. J., 92(4), 395-405.
- Tan, K.H., Kong, F.K., Teng, S. and Weng, L.W. (1997a), "Effect of web reinforcement on high-strength concrete deep beams", ACI Struct. J., 94(5), 572-582.
- Tan, K.H., Teng, S., Kong, F.K. and Lu, H.Y. (1997b), "Main tension steel in high-strength concrete deep and short beams", ACI Struct. J., 94(6), 752-768.
- Tang, C.Y. and Tan, K.H. (2004), "Interactive mechanical model for shear strength of deep beams", J. Struct. Eng., ASCE, 130(10), 1534-1544. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1534)
- Tu, Y.S. (2005), "An analytical study of the lateral load-deflection responses of low rise RC walls and frames", PhD dissertation, Department of Construction Engineering, National Taiwan University of Science and Technology, Taiwan (in Chinese).
- Vecchio, F.J. and Collins, M.P. (1993), "Compression response of cracked reinforced concrete", J. Struct. Eng., ASCE, 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
- Zhang, L.X.B. and Hsu, T.T.C. (1998), "Behavior and analysis of 100 MPa concrete membrane elements", J. Struct. Eng., ASCE, 124(1), 24-34. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:1(24)
Cited by
- Reinforcement design for the anchorage of externally prestressed bridges with "tensile stress region" vol.11, pp.5, 2013, https://doi.org/10.12989/cac.2013.11.5.383
- Tests of reinforced concrete deep beams vol.15, pp.3, 2015, https://doi.org/10.12989/cac.2015.15.3.357
- Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams vol.11, pp.3, 2013, https://doi.org/10.12989/cac.2013.11.3.237
- Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams vol.46, pp.6, 2013, https://doi.org/10.12989/sem.2013.46.6.853
- Behaviour of concrete deep beams with openings and low shear span-to-depth ratio vol.41, 2012, https://doi.org/10.1016/j.engstruct.2012.03.055
- Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis vol.9, pp.1, 2012, https://doi.org/10.12989/cac.2012.9.1.063
- Applications of the ANFIS and LR in the prediction of strain in tie section of concrete deep beams vol.12, pp.3, 2013, https://doi.org/10.12989/cac.2013.12.3.243
- Fuzzy modelling approach for shear strength prediction of RC deep beams vol.16, pp.3, 2015, https://doi.org/10.12989/sss.2015.16.3.497
- Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments vol.10, pp.1, 2012, https://doi.org/10.12989/cac.2012.10.1.079
- Reinforced concrete corbels strengthened with carbon fiber reinforced plastics vol.10, pp.3, 2012, https://doi.org/10.12989/cac.2012.10.3.259
- Evaluation of early age mechanical properties of concrete in real structure vol.12, pp.1, 2013, https://doi.org/10.12989/cac.2013.12.1.053
- Prediction of the load and deflection response of concrete deep beams reinforced with FRP bars pp.1537-6532, 2021, https://doi.org/10.1080/15376494.2018.1549292
- Tests of high-strength concrete deep beams vol.71, pp.4, 2019, https://doi.org/10.1680/jmacr.17.00381
- Behavior of continuous RC deep girders that support walls with long end shear spans vol.38, pp.4, 2010, https://doi.org/10.12989/sem.2011.38.4.385
- Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars vol.38, pp.4, 2010, https://doi.org/10.12989/sem.2011.38.4.459
- Application of the ANFIS model in deflection prediction of concrete deep beam vol.45, pp.3, 2010, https://doi.org/10.12989/sem.2013.45.3.323
- A parametric shear constitutive law for reinforced concrete deep beams based on multiple linear regression model vol.8, pp.4, 2010, https://doi.org/10.12989/acc.2019.8.4.285
- Numerical analysis of RC hammer head pier cap beams extended and reinforced with CFRP plates vol.25, pp.5, 2010, https://doi.org/10.12989/cac.2020.25.5.461