Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Cao, S. and Tamura, T. (2006), "Experimental study on roughness effects on turbulent boundary layer flow over a two dimensional steep hill", J. Wind Eng. Ind. Aerod., 94, 1-19. https://doi.org/10.1016/j.jweia.2005.10.001
- Carpenter, P. and Locke, N. (1999), "Investigation of wind speeds over multiple two dimensional-hills", J. Wind Eng. Ind. Aerod., 83, 109-120. https://doi.org/10.1016/S0167-6105(99)00065-3
-
Cheung, J.C.K., Eaddy, M. and Melbourne, W.H. (2003), "Wind tunnel modeling of neutral boundary layer flow over mountains", Proc.
$11^{th}$ Int. Conf. on Wind Engineering, Texas, June. - Derickson, R.G. and Peterka, J.A. (2004), Development of a Powerful Hybrid Tool for Evaluating Wind Power in Complex Terrain: Atmospheric Numerical Models and Wind Tunnels, Paper No. AIAA-2004-1005, American Institute of Aeronautics and Astronautics, Inc., 1-15.
- Duijm, N.J. (1996), "Dispersion over complex terrain: wind tunnel modeling and analysis techniques", Atmos. Environ., 30, 2839-2852. https://doi.org/10.1016/1352-2310(95)00344-4
- Finnigan, J.J. (1988), Air flow over complex terrain, in: W. L. Steffen, O.T. Denmead (Eds.), Flow and Transport in the Natural Environment, Springer, Berlin, 183-229.
- Holmes, J.D., Walker, G.R. and Steen, W.E. (1979), The effect of an isolated hill on wind velocities near ground level -- initial measurements, Wind Eng. Rep. 3/79, Dept. of Civil and Systems Engineering, James Cook University of North Queensland, Townsville, Australia, June.
- Ishihara, T., Hibi, K. and Oikawa, S. (1999), "A wind tunnel study of turbulence flow over a three-dimensional steep hill", J. Wind Eng. Ind. Aerod., 83, 95-107. https://doi.org/10.1016/S0167-6105(99)00064-1
- Irwin, H.P.A.H. (1981), "The design of spires for wind simulation", J. Wind Eng. Ind. Aerod., 7, 361-366. https://doi.org/10.1016/0167-6105(81)90058-1
- Jackson, P.S. and Hunt, J.C.R. (1975), "Turbulent wind flow over a low hill", Q. J. Roy. Meteor. Soc., 101, 929-955. https://doi.org/10.1002/qj.49710143015
- Kaimal, J.C. (1972), "Spectral characteristics of surface layer Turbulence", Q. J. Roy. Meteor. Soc., 98, 563-589. https://doi.org/10.1002/qj.49709841707
- Kim, H.G., Lee, C.M., Lim, H.C. and Kyong, N.H. (1997), "An experimental and numerical study on the flow over two-dimensional hills", J. Wind Eng. Ind. Aerod., 66, 17-33. https://doi.org/10.1016/S0167-6105(97)00007-X
- Lemelin, D.R., Surry, D. and Davenport, A.G. (1988), "Simple approximations for wind speed-up over hills", J. Wind Eng. Ind. Aerod., 28, 117-127. https://doi.org/10.1016/0167-6105(88)90108-0
- Lubitz, W.D. and White, B.R. (2007), "Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills", J. Wind Eng. Ind. Aerod., 95, 639-661. https://doi.org/10.1016/j.jweia.2006.09.001
- Mason, P.J. and Sykes, R.I. (1979), "Flow over an Isolated Hill of Moderate Slope", Q. J. Roy. Meteor. Soc., 105, 383-395. https://doi.org/10.1002/qj.49710544405
- Miller, C.J. and Davenport, A.G. (1998), "Guidelines for the calculation of wind speed-ups", J. Wind Eng. Ind. Aerod., 74-76, 189-197. https://doi.org/10.1016/S0167-6105(98)00016-6
- Neff, D.V. and Meroney, R.N. (1998), "Wind-tunnel modeling of hill and vegetation influence on wind power availability", J. Wind Eng. Ind. Aerod., 74-76, 335-343. https://doi.org/10.1016/S0167-6105(98)00030-0
- Pearse, J.R., (1982), "Wind flow over conical hills in a simulated atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 10, 303-313. https://doi.org/10.1016/0167-6105(82)90004-6
- Taylor, P.A. and Gent, P.R. (1974), "A model of atmospheric boundary-layer flow above an isolated, two dimensional "hill"; an example of flow above gentle topography", Bound.-Lay. Meteorol., 7, 349-362. https://doi.org/10.1007/BF00240837
- Taylor, P.A., Walmsley, J.L. and Salmon, J.R. (1983), "A simple model of neutrally stratified boundary-layer flow over real terrain incorporating wavenumber dependent scaling", Bound.-Lay. Meteorol., 26, 169-189. https://doi.org/10.1007/BF00121541
- Taylor, P.A. and Lee, R.J. (1984), "Simple Guidelines for estimating wind speed variations due to small scale topographic features", Clim. Bull., 18(2), 3-32.
- Taylor, P.A., Mason, P.J. and Bradley, E.F. (1987), "Boundary layer flow over low hills", Bound.-Lay. Meteorol., 39, 107-132. https://doi.org/10.1007/BF00121870
- Taylor, P.A. (1998), "Turbulent boundary-layer flow over low and moderate slope hills", J. Wind Eng. Ind. Aerod., 74-76, 25-47. https://doi.org/10.1016/S0167-6105(98)00005-1
- Walmsley, J.L., Taylor, P.A. and Keith, T. (1986), "A simple model of neutrally stratified boundary-layer flow over complex terrain with surface roughness modulations", Bound.-Lay. Meteorol., 36, 157-186. https://doi.org/10.1007/BF00117466
- Walmsley, J.L., Salmon, J.R. and Taylor, P.A. (1982), "On the application of a model of boundary-layer flow over low hills to real terrain", Bound.-Lay. Meteorol., 23, 17-46. https://doi.org/10.1007/BF00116110
- Weng, W.S., Taylor, P.A. and Walmsley, J.L. (2000), "Guidelines for air flow over complex terrain: model developments", J. Wind Eng. Ind. Aerod., 86, 169-186. https://doi.org/10.1016/S0167-6105(00)00009-X
- Yamaguchi, A., Ishihara, T. and Fujino, Y. (2003), "Experimental study of the wind flow in a coastal region of Japan", J. Wind Eng. Ind. Aerod., 91, 247-264. https://doi.org/10.1016/S0167-6105(02)00349-5
Cited by
- Numerical simulations of the mean wind speeds and turbulence intensities over simplified gorges using the SST k-ω turbulence model vol.10, pp.1, 2016, https://doi.org/10.1080/19942060.2016.1169947
- Wind tunnel test and numerical simulation of wind characteristics at a bridge site in mountainous terrain vol.20, pp.8, 2017, https://doi.org/10.1177/1369433216673377
- A wind resource assessment around large mountain masses: The speed-up effect vol.13, pp.6, 2016, https://doi.org/10.1080/15435075.2014.993763
- The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test vol.20, pp.1, 2015, https://doi.org/10.12989/was.2015.20.1.015
- Wind tunnel tests on the characteristics of wind fields over a simplified gorge vol.20, pp.10, 2017, https://doi.org/10.1177/1369433216680635
- A wind energy integration analysis using wind resource assessment as a decision tool for promoting sustainable energy utilization in agriculture vol.96, 2015, https://doi.org/10.1016/j.jclepro.2013.11.030
- Investigation of the longitudinal wind power spectra at the gorge terrain vol.20, pp.11, 2017, https://doi.org/10.1177/1369433217693632
- Wind characteristics at bridge site in a deep-cutting gorge by wind tunnel test vol.160, 2017, https://doi.org/10.1016/j.jweia.2016.11.002
- Numerical Simulation of Wind Fields at the Bridge Site in Mountain-Gorge Terrain Considering an Updated Curved Boundary Transition Section vol.31, pp.3, 2018, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000830
- Study on the wind-field characteristics over a bridge site due to the shielding effects of mountains in a deep gorge via numerical simulation vol.22, pp.14, 2019, https://doi.org/10.1177/1369433219857859
- Buffeting response of a free-standing bridge pylon in a trumpet-shaped mountain pass vol.30, pp.1, 2010, https://doi.org/10.12989/was.2020.30.1.085
- Characteristics of Typhoon “Fung-Wong” Near Earth Pulsation vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/9972981
- Research on wind barrier of canyon bridge-tunnel junction based on wind characteristics vol.24, pp.5, 2010, https://doi.org/10.1177/1369433220971730
- Wind characteristics and flutter performance of a long-span suspension bridge located in a deep-cutting gorge vol.233, pp.None, 2021, https://doi.org/10.1016/j.engstruct.2020.111841