References
- Applied Research Associates, Inc. (2002), HAZUS, Wind Loss Estimation Methodology, Volume I. North Carolina, October 2002.
- ASCE 7-05 (2005), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia.
- Baker, C.J. (2007), "The debris flight equations", J. Wind Eng. Ind. Aerod., 95, 329-353. https://doi.org/10.1016/j.jweia.2006.08.001
- Engineering Sciences Data Unit (1974), Characteristics of atmospheric turbulence near the ground, Data Item 74031.
- Engineering Sciences Data Unit (1982), Strong winds in the atmosphere boundary layer. Part 1: Mean-hourly wind speeds, Data Item 82026.
- Engineering Sciences Data Unit (1983), Strong winds in the atmosphere boundary layer. Part 2: Discrete gust speeds, Data Item 83045.
- Holmes, J.D. (2004), "Trajectories of spheres in strong winds with application to wind-borne debris", J. Wind Eng. Ind. Aerod., 92, 9-22.
- Holmes, J.D., Letchford, C.W. and Lin, N. (2006), "Investigations of plate-type windborne debris- Part II :Computed trajectories", J. Wind Eng. Ind. Aerod., 94, 21-39. https://doi.org/10.1016/j.jweia.2005.10.002
- Iversen, J.D. (1979), "Autorotating flat plate wings: the effect of the moment of inertia, geometry and Reynolds number", J. Fluid Mech., 92, 327-348. https://doi.org/10.1017/S0022112079000641
- Kopp, G.A., Surry, D. and Mans, C. (2005), "Wind effects of parapets on low buildings: Part 1. Basic aerodynamics and local loads", J. Wind Eng. Ind. Aerod., 93, 817-841. https://doi.org/10.1016/j.jweia.2005.08.006
- Kopp, G.A., Oh, J.H. and Inculet, D.R. (2008a), "Wind-induced internal pressures in houses", J. Struct. Eng. ASCE, 134, 1129-1138. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1129)
- Kopp, G.A., Morrison, M.J., Iizumi, E., Henderson, D. and Hong, H.P. (2008b), "The 'Three Little Pigs' Project: Hurricane Risk Mitigation by Integrated Wind Tunnel and Full-Scale Laboratory Tests", Nat. Hazards Review, ASCE, (submitted).
- Kordi, B. and Kopp, G.A. (2009a), "Discussion of the debris flight equations", J. Wind Eng. Ind. Aerod., 97, 151-154. https://doi.org/10.1016/j.jweia.2008.10.001
- Kordi, B. and Kopp, G.A. (2009b), "Evaluation of the quasi-steady theory applied to windborne flat plates in uniform flow", J. Eng. Mech. ASCE, 135(7), 657-668. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000008
- Kordi, B. and Kopp, G.A. (2010), "Effects of Initial Conditions on the Flight of Windborne Plate Debris", J. Wind Eng. Ind. Aerod., (submitted).
- Lin, N., Letchford, C. and Holmes, J.D. (2006), "Investigation of plate-type windborne debris. Part I. Experiments in wind tunnel and full scale", J. Wind Eng. Ind. Aerod., 94, 51-76. https://doi.org/10.1016/j.jweia.2005.12.005
- Lin, N., Holmes, J.D. and Letchford, C. (2007), "Trajectories of Wind-Borne Debris in Horizontal Winds and Applications to Impact Testing", J. Struct. Eng. ASCE, 133, 274-282. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(274)
- Richards, P.J., Williams, N., Laing, B., McCarty, M. and Pond, M. (2008), "Numerical calculation of the threedimensional motion of wind-borne debris", J. Wind Eng. Ind. Aerod., 96, 2188-2202. https://doi.org/10.1016/j.jweia.2008.02.060
- St. Pierre, L.M., Kopp, G.A., Surry, D. and Ho, T.C.E. (2005), "The UWO contribution to the NIST aerodynamic database for wind loads on low buildings: Part 2. Comparison of data with wind load provisions", J. Wind Eng. Ind. Aerod., 93, 31-59. https://doi.org/10.1016/j.jweia.2004.07.007
- Surry, D. (1982), Consequences of distortions in the flow including mismatching scales and intensities of turbulence, Wind Tunnel modelling for civil engineering applications, (ED: T.A. Reinhold), Cambridge University Press, Cambridge, 1982, 137-185.
- Surry, D., Kopp, G.A. and Bartlett, F.M. (2005), "Wind load testing of low buildings to failure at model and full scale", Nat. Hazards Review, ASCE, 6, 121-128. https://doi.org/10.1061/(ASCE)1527-6988(2005)6:3(121)
- Tachikawa, M. (1983), "Trajectories of flat plates in uniform flow with application to wind-generated missiles", J. Wind Eng. Ind. Aerod., 14, 443-453. https://doi.org/10.1016/0167-6105(83)90045-4
- Tachikawa, M. (1988), "A method for estimating the distribution range of trajectories of wind-borne missiles", J. Wind Eng. Ind. Aerod., 29, 175-184. https://doi.org/10.1016/0167-6105(88)90156-0
- Visscher, B.T. and Kopp, G.A. (2007), "Trajectories of roof sheathing panels under high winds", J. Wind Eng. Ind. Aerod., 95, 697-713. https://doi.org/10.1016/j.jweia.2007.01.003
- Wills, J.A.B., Lee, B.E. and Wyatt, T.A. (2002), "A model of wind-borne debris damage", J. Wind Eng. Ind. Aerod., 90, 555-565. https://doi.org/10.1016/S0167-6105(01)00197-0
Cited by
- Numerical simulation of 3-D probabilistic trajectory of plate-type wind-borne debris vol.22, pp.1, 2016, https://doi.org/10.12989/was.2016.22.1.017
- Wind loads on roof sheathing of houses vol.114, 2013, https://doi.org/10.1016/j.jweia.2012.12.011
- Dispersion of windborne debris vol.104-106, 2012, https://doi.org/10.1016/j.jweia.2012.02.026
- Pressure field of a rotating square plate with application to windborne debris vol.15, pp.6, 2012, https://doi.org/10.12989/was.2012.15.6.509
- Roof tile frangibility and puncture of metal window shutters vol.17, pp.2, 2013, https://doi.org/10.12989/was.2013.17.2.185
- Damage estimation of roof panels considering wind loading correlation vol.155, 2016, https://doi.org/10.1016/j.jweia.2016.05.009
- An investigation of plate-type windborne debris flight using coupled CFD–RBD models. Part I: Model development and validation vol.111, 2012, https://doi.org/10.1016/j.jweia.2012.07.008
- An investigation of plate-type windborne debris flight using coupled CFD–RBD models. Part II: Free and constrained flight vol.111, 2012, https://doi.org/10.1016/j.jweia.2012.07.011
- Effects of initial conditions on the flight of windborne plate debris vol.99, pp.5, 2011, https://doi.org/10.1016/j.jweia.2011.02.009
- Fragility curves for building envelope components subject to windborne debris impact vol.107-108, 2012, https://doi.org/10.1016/j.jweia.2012.05.005
- Windborne debris and damage risk models: a review vol.13, pp.2, 2010, https://doi.org/10.12989/was.2010.13.2.095
- Performance of hurricane shutters under impact by roof tiles vol.32, pp.10, 2010, https://doi.org/10.1016/j.engstruct.2010.07.012
- Three-dimensional probabilistic wind-borne debris trajectory model for building envelope impact risk assessment vol.102, 2012, https://doi.org/10.1016/j.jweia.2012.01.002
- Current and Future Directions for Wind Research at Western: Disaster Mitigation and the 'Three Little Pigs' Project vol.35, pp.4, 2010, https://doi.org/10.5359/jawe.35.282
- The critical velocity for aggregate blow-off from a built-up roof vol.107-108, 2012, https://doi.org/10.1016/j.jweia.2012.03.031
- A method to assess peak storm wind speeds using detailed damage surveys vol.33, pp.1, 2011, https://doi.org/10.1016/j.engstruct.2010.09.021
- Tracking the 6-DOF Flight Trajectory of Windborne Debris Using Stereophotogrammetry vol.4, pp.4, 2010, https://doi.org/10.3390/infrastructures4040066