DOI QR코드

DOI QR Code

Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties

  • Zhang, Taotao (School of Transportation Science and Engineering, Beihang University) ;
  • Shi, Zhifei (School of Civil Engineering, Beijing Jiaotong University)
  • Received : 2009.10.29
  • Accepted : 2010.04.08
  • Published : 2010.11.25

Abstract

Based on the theory of piezo-elasticity, the paper obtains the exact solutions of functionally graded piezoelectric hollow cylinders with different piezoelectric parameter $g_{31}$. Two kinds of piezoelectric hollow cylinders are considered herein. One is a multi-layered cylinder with different parameter $g_{31}$ in different layers; the other is a continuously graded cylinder with arbitrarily variable $g_{31}$. By using the Airy stress function method with plane strain assumptions, the exact solutions of the mechanic and electrical components of both cylinders are obtained when they are subjected to external voltage (actuator) and pressure (sensor), simultaneously. Furthermore, good agreement is achieved between the theoretical and numerical results, and useful conclusions are given.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Angelino, M.R. and Washington, G.N. (2002), "Design and construction of a piezoelectric point actuated active aperture antenna", J. Intel. Mat. Syst. Str., 13(2-3), 125-136. https://doi.org/10.1177/104538902761402521
  2. Chaudhry, Z., Lalande, F. and Rogers, C.A. (1994), "Special considerations in the modeling of induced strain actuator patches bonded to shell structures", Proc. SPIE, 2190, 563-570.
  3. Crawley, E.F. (1994), "Intelligent structures for aerospace: a technology overview and assessment", AIAA J., 32(8), 1689-1699. https://doi.org/10.2514/3.12161
  4. Hauke, T., Kouvatov, A., Steinhausen, R., Seifert, W., Beige, H., Langhammer, H.T. and Abicht, H.P. (2000), "Bending behavior of functionally gradient materials", Ferroelectrics, 238(1), 195-202. https://doi.org/10.1080/00150190008008784
  5. Ichinose, N., Miyamoto, N. and Takahashi, S. (2004), "Ultrasonic transducers with functionally graded piezoelectric ceramics", J. Eur. Ceram. Soc., 24(6), 1681-1685. https://doi.org/10.1016/S0955-2219(03)00599-5
  6. Ikeda, T. (1990), Fundamentals of piezoelectricity, Oxford University Press, USA.
  7. Jayachandran, V., King, P., Meyer, N.E., Li, F.J., Petrova, M., Westervelt, M.A., Hirsh, S.M. and Sun, J.Q. (1999), "Real-time feedforward control of low-frequency interior noise using shallow spherical shell piezoceramic actuators", Smart Mater. Struct., 8(5), 579-584. https://doi.org/10.1088/0964-1726/8/5/308
  8. Kouvatov, A., Steinhausen, R., Seifert, W., Hauke, T., Langhammer, H.T., Beige, H. and Abicht, H.P. (1999), "Comparison between bimorphic and polymorphic bending devices", J. Eur. Ceram. Soc., 19(6-7), 1153-1156. https://doi.org/10.1016/S0955-2219(98)00396-3
  9. Kruusing, A. (2000), "Analysis and optimization of loaded cantilever beam microactuators", Smart Mater. Struct., 9(2), 186-196. https://doi.org/10.1088/0964-1726/9/2/309
  10. Lalande, F., Chaudhry, Z. and Rogers, C.A. (1995), An experimental study of the actuation authority of rings and shells, AIAA Paper No. 95-1099.
  11. Larson, P.H. and Vinson, J.R. (1993), "The use of piezoelectric materials in curved beams and rings", Proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, LA, USA.
  12. Liu, C.W. and Taciroglu, E. (2007), "Numerical analysis of end effects in laminated piezoelectric circular cylinders", Comput. Method. Appl. M., 196(17-20), 2173-2186. https://doi.org/10.1016/j.cma.2006.11.012
  13. Liu, T.T. and Shi, Z.F. (2004), "Bending behavior of functionally gradient piezoelectric cantilever", Ferroelectrics, 308, 43-51. https://doi.org/10.1080/00150190490508774
  14. Marcus, M.A. (1984), "Performance characteristics of piezoelectric polymer flexure mode devices", Ferroelectrics, 57(1-4), 203-220. https://doi.org/10.1080/00150198408012763
  15. Rossi, A., Liang, C. and Rogers, C.A. (1993), "Impedance modeling of piezoelectric actuator-driven systems: an application to cylindrical ring structures", Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC Structures, La Jolla, CA, USA, April.
  16. Ruan, X.P., Danforth, S.C., Safari, A. and Chou, T.W. (2000), "Saint-Venant end effects in piezoceramic materials", Int. J. Solids Struct., 37(19), 2625-2637. https://doi.org/10.1016/S0020-7683(99)00034-7
  17. Shi, Z.F. (2002), "General solution of a density functionally gradient piezoelectric cantilever and its applications", Smart Mater. Struct., 11(1), 122-129. https://doi.org/10.1088/0964-1726/11/1/314
  18. Shi, Z.F. (2005), "Bending behavior of piezoelectric curved actuator", Smart Mater. Struct., 14, 835-842. https://doi.org/10.1088/0964-1726/14/4/043
  19. Shi, Z.F. and Chen, Y. (2004), "Functionally graded piezoelectric cantilever under load", Arch. Appl. Mech., 74(3-4), 237-247. https://doi.org/10.1007/s00419-004-0346-5
  20. Shi, Z.F. and Zhang, T.T. (2008), "Bending analysis of a piezoelectric curved actuator with a generally graded property for piezoelectric parameter", Smart Mater. Struct., 17(4), 045018 (7pp). https://doi.org/10.1088/0964-1726/17/4/045018
  21. Sonti, V.R. and Jones, J.D. (1996), "Curved piezoactuator model for active vibration control of cylindrical shells", AIAA J., 34(5), 1034-1040. https://doi.org/10.2514/3.13184
  22. Taya, M., Almajid, A.A., Dunn, M. and Takahashi, H. (2003), "Design of bimorph piezo-composite actuators with functionally graded microstructure", Sensor. Actuat. A-Phys., 107, 248-260. https://doi.org/10.1016/S0924-4247(03)00381-9
  23. Tzou, H.S. and Gadre, M. (1989), "Theoretical analysis of a multi-layered thin shell coupled with piezoelectric actuators for distributed vibration controls", J. Sound Vib., 132(3), 433-450. https://doi.org/10.1016/0022-460X(89)90637-8
  24. Wu, C.C.M., Kahn, M. and Moy, W. (1996), "Piezoelectric ceramics with functional gradients: a new application in material design", J. Am. Ceram. Soc., 79(3), 809-812.
  25. Yang, J.S. (2007), "One-dimensional equations for planar piezoelectric curved bars", IEEE T. Ultrason. Ferr., 54(10), 2202-2207. https://doi.org/10.1109/TUFFC.2007.517
  26. Zhang, T.T. and Shi, Z.F. (2006), "Two-dimensional exact analysis for piezoelectric curved actuators", J. Micromech. Microeng., 16(3), 640-647. https://doi.org/10.1088/0960-1317/16/3/020
  27. Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle, fabrication and displacement characteristic of a functionally gradient piezoelectric ceramic actuator", Sensor. Actuat. A-Phys., 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5

Cited by

  1. Coupled electro-elastic analysis of functionally graded piezoelectric material plates vol.16, pp.5, 2015, https://doi.org/10.12989/sss.2015.16.5.781
  2. Parametric Analysis and Optimization of Radially Layered Cylindrical Piezoceramic/Epoxy Composite Transducers vol.9, pp.11, 2018, https://doi.org/10.3390/mi9110585
  3. Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers vol.23, pp.3, 2010, https://doi.org/10.12989/sss.2019.23.3.215
  4. Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer vol.24, pp.4, 2010, https://doi.org/10.12989/sss.2019.24.4.435
  5. Electro-elastic analysis of functionally graded piezoelectric variable thickness cylindrical shells using a first-order electric potential theory and perturbation technique vol.31, pp.17, 2010, https://doi.org/10.1177/1045389x20935627