Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Angelino, M.R. and Washington, G.N. (2002), "Design and construction of a piezoelectric point actuated active aperture antenna", J. Intel. Mat. Syst. Str., 13(2-3), 125-136. https://doi.org/10.1177/104538902761402521
- Chaudhry, Z., Lalande, F. and Rogers, C.A. (1994), "Special considerations in the modeling of induced strain actuator patches bonded to shell structures", Proc. SPIE, 2190, 563-570.
- Crawley, E.F. (1994), "Intelligent structures for aerospace: a technology overview and assessment", AIAA J., 32(8), 1689-1699. https://doi.org/10.2514/3.12161
- Hauke, T., Kouvatov, A., Steinhausen, R., Seifert, W., Beige, H., Langhammer, H.T. and Abicht, H.P. (2000), "Bending behavior of functionally gradient materials", Ferroelectrics, 238(1), 195-202. https://doi.org/10.1080/00150190008008784
- Ichinose, N., Miyamoto, N. and Takahashi, S. (2004), "Ultrasonic transducers with functionally graded piezoelectric ceramics", J. Eur. Ceram. Soc., 24(6), 1681-1685. https://doi.org/10.1016/S0955-2219(03)00599-5
- Ikeda, T. (1990), Fundamentals of piezoelectricity, Oxford University Press, USA.
- Jayachandran, V., King, P., Meyer, N.E., Li, F.J., Petrova, M., Westervelt, M.A., Hirsh, S.M. and Sun, J.Q. (1999), "Real-time feedforward control of low-frequency interior noise using shallow spherical shell piezoceramic actuators", Smart Mater. Struct., 8(5), 579-584. https://doi.org/10.1088/0964-1726/8/5/308
- Kouvatov, A., Steinhausen, R., Seifert, W., Hauke, T., Langhammer, H.T., Beige, H. and Abicht, H.P. (1999), "Comparison between bimorphic and polymorphic bending devices", J. Eur. Ceram. Soc., 19(6-7), 1153-1156. https://doi.org/10.1016/S0955-2219(98)00396-3
- Kruusing, A. (2000), "Analysis and optimization of loaded cantilever beam microactuators", Smart Mater. Struct., 9(2), 186-196. https://doi.org/10.1088/0964-1726/9/2/309
- Lalande, F., Chaudhry, Z. and Rogers, C.A. (1995), An experimental study of the actuation authority of rings and shells, AIAA Paper No. 95-1099.
- Larson, P.H. and Vinson, J.R. (1993), "The use of piezoelectric materials in curved beams and rings", Proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, LA, USA.
- Liu, C.W. and Taciroglu, E. (2007), "Numerical analysis of end effects in laminated piezoelectric circular cylinders", Comput. Method. Appl. M., 196(17-20), 2173-2186. https://doi.org/10.1016/j.cma.2006.11.012
- Liu, T.T. and Shi, Z.F. (2004), "Bending behavior of functionally gradient piezoelectric cantilever", Ferroelectrics, 308, 43-51. https://doi.org/10.1080/00150190490508774
- Marcus, M.A. (1984), "Performance characteristics of piezoelectric polymer flexure mode devices", Ferroelectrics, 57(1-4), 203-220. https://doi.org/10.1080/00150198408012763
- Rossi, A., Liang, C. and Rogers, C.A. (1993), "Impedance modeling of piezoelectric actuator-driven systems: an application to cylindrical ring structures", Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC Structures, La Jolla, CA, USA, April.
- Ruan, X.P., Danforth, S.C., Safari, A. and Chou, T.W. (2000), "Saint-Venant end effects in piezoceramic materials", Int. J. Solids Struct., 37(19), 2625-2637. https://doi.org/10.1016/S0020-7683(99)00034-7
- Shi, Z.F. (2002), "General solution of a density functionally gradient piezoelectric cantilever and its applications", Smart Mater. Struct., 11(1), 122-129. https://doi.org/10.1088/0964-1726/11/1/314
- Shi, Z.F. (2005), "Bending behavior of piezoelectric curved actuator", Smart Mater. Struct., 14, 835-842. https://doi.org/10.1088/0964-1726/14/4/043
- Shi, Z.F. and Chen, Y. (2004), "Functionally graded piezoelectric cantilever under load", Arch. Appl. Mech., 74(3-4), 237-247. https://doi.org/10.1007/s00419-004-0346-5
- Shi, Z.F. and Zhang, T.T. (2008), "Bending analysis of a piezoelectric curved actuator with a generally graded property for piezoelectric parameter", Smart Mater. Struct., 17(4), 045018 (7pp). https://doi.org/10.1088/0964-1726/17/4/045018
- Sonti, V.R. and Jones, J.D. (1996), "Curved piezoactuator model for active vibration control of cylindrical shells", AIAA J., 34(5), 1034-1040. https://doi.org/10.2514/3.13184
- Taya, M., Almajid, A.A., Dunn, M. and Takahashi, H. (2003), "Design of bimorph piezo-composite actuators with functionally graded microstructure", Sensor. Actuat. A-Phys., 107, 248-260. https://doi.org/10.1016/S0924-4247(03)00381-9
- Tzou, H.S. and Gadre, M. (1989), "Theoretical analysis of a multi-layered thin shell coupled with piezoelectric actuators for distributed vibration controls", J. Sound Vib., 132(3), 433-450. https://doi.org/10.1016/0022-460X(89)90637-8
- Wu, C.C.M., Kahn, M. and Moy, W. (1996), "Piezoelectric ceramics with functional gradients: a new application in material design", J. Am. Ceram. Soc., 79(3), 809-812.
- Yang, J.S. (2007), "One-dimensional equations for planar piezoelectric curved bars", IEEE T. Ultrason. Ferr., 54(10), 2202-2207. https://doi.org/10.1109/TUFFC.2007.517
- Zhang, T.T. and Shi, Z.F. (2006), "Two-dimensional exact analysis for piezoelectric curved actuators", J. Micromech. Microeng., 16(3), 640-647. https://doi.org/10.1088/0960-1317/16/3/020
- Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle, fabrication and displacement characteristic of a functionally gradient piezoelectric ceramic actuator", Sensor. Actuat. A-Phys., 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5
Cited by
- Coupled electro-elastic analysis of functionally graded piezoelectric material plates vol.16, pp.5, 2015, https://doi.org/10.12989/sss.2015.16.5.781
- Parametric Analysis and Optimization of Radially Layered Cylindrical Piezoceramic/Epoxy Composite Transducers vol.9, pp.11, 2018, https://doi.org/10.3390/mi9110585
- Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers vol.23, pp.3, 2010, https://doi.org/10.12989/sss.2019.23.3.215
- Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer vol.24, pp.4, 2010, https://doi.org/10.12989/sss.2019.24.4.435
- Electro-elastic analysis of functionally graded piezoelectric variable thickness cylindrical shells using a first-order electric potential theory and perturbation technique vol.31, pp.17, 2010, https://doi.org/10.1177/1045389x20935627